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The economic dependency of the Bitcoin security

Abstract:

We study to what extent the Bitcoin blockchain security permanently depends on the
underlying distribution of cryptocurrency market outcomes. We use daily blockchain and
Bitcoin data for 2014-2019 and employ the ARDL approach. We test three equilibrium
hypotheses: (1) sensitivity of the Bitcoin blockchain to mining reward; (ii) security outcomes
of the Bitcoin blockchain and the proof-of-work cost; and (iii) the speed of adjustment of the
Bitcoin blockchain security to deviations from the equilibrium path. Our results suggest that
the Bitcoin price and mining rewards are intrinsically linked to Bitcoin security outcomes.
The Bitcoin blockchain security’s dependency on mining costs is geographically differenced
— it is more significant for the global mining leader China than for other world regions. After
input or output price shocks, the Bitcoin blockchain security reverts to its equilibrium

security level.
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Introduction

The Bitcoin blockchain is a distributed alternative to centralized transaction-recording and
record-keeping systems by enabling trustworthy interactions, recording transactions among
non-trusting parties and storing records. The underlying ledger that creates and stores records
of transactions is a digital chain of blocks, where information is recorded sequentially in data
structures known as ‘blocks’ stored into a public database ('chain'). Being distributed,
blockchain is run by a peer-to-peer network of nodes (computers) who collectively adhere to
an agreed distributed validation algorithm (protocol) to ensure the validity of transactions.
Given that a distributed network of anonymous record-keeping peers (miners) with free entry
and exit is inherently ‘trustless’, it requires some trust-enhancing mechanism. The trust
problem among non-trusting parties is solved by requiring miners to pay a cost (in form of
computing power for blockchain) to record transaction information and requiring that future
record-keepers (miners) validate those reports. Under a well-functioning institutional
governance technology, blockchain is immutable, meaning that once data have been recorded

on the blockchain, they cannot be altered anymore.?

Ensuring a transaction correctness and security, enforcing property rights and contracts are
preconditions for a functioning of markets. In traditional centralized institutional governance
systems, typically, state or other centralized intermediary guarantees the transfers of
ownership ensures transfers of possession and guarantees the security of property rights and
contract enforcement. The correctness and security is incentivized via monopoly rents. A
comparative advantage of distributed institutional governance systems such as blockchain is
the ability to achieve and enforce a uniform view (agreement) among non-trusting parties

with divergent interests and incentives on the state of transactions in a cost-efficient and

2 For more conceptual discussion see Appendix Al


https://en.wikipedia.org/wiki/Peer-to-peer
https://en.wikipedia.org/wiki/Protocol_(communication)

consensus-effective way. Blockchain security algorithms make it possible for distributed
record-keepers to confirm that the network rules are being followed, i.e. all other record-
keepers ignore any chain containing a block that does not conform to the network rules. The
correctness and security is incentivized via physical resource costs — the proof-of-work
(PoW) makes it costly to extend invalid chains of blocks (Davidson, De Filippi and Potts

2016; Cong and He 2018; Derks et al. 2018).3

In the same time, ensuring a transaction correctness and security may be more challenging for
distributed digital ledgers than for traditional centralized ledgers (Abadi and Brunnermeier
2018).* First, because digital goods have two characteristics — non-rivalry and non-
excludability — which compared to traditional private goods do not prevent a double
spending. Second, the security budget of distributed ledgers is endogenous and fluctuates
over time (in a fiat currency nomination), implying that the underlying institutional
governance technology may become vulnerable to attacks in a low-price and low-security-
budget equilibrium. Hence, ensuring the transaction correctness and security may become an
issue particularly in periods of low security budget. Indeed, a number of cryptocurrency-
blockchains with a relatively small security budget of preventing attacks have experienced

successful majority (hash rate)’ attacks in recent years, e.g. Bitcoin Gold, Ethereum Classic.®

3 There are two prominent designs for validation mechanism — proof-of-work (PoW) and proof-of stake (PoS) —
with each having different incentive scheme in achieving consensus. In this paper we focus on the PoW linked to
Bitcoin which is the largest and most popular cryptocurrency.

“1In the context of creating and maintaining distributed ledgers of information, a strong security implies immutable
records of transactions, including ownership rights and smart contracts.

5 The hash rate measures the speed at which a given mining machine operates. Usually, the hash rate is expressed
in hashes per second (h/s). For example, a mining machine operating at a speed of 100 hashes per second makes
100 guesses per second. Thus, the hash rate measures how much computer power a cryptocurrency network is
deploying to continuously solve the computational problem and generate/record blocks. For example, currently
the Bitcoin hash rate is around 110 million Tera per second where 1 Tera/s is equal to one trillion hashes per
second.

® For example, Bitcoin Gold, a hard fork of Bitcoin, experienced a sequence of double-spending attacks in May
2018. Its price measured in USD at the end of that month was 40% lower. Ethereum Classic also experienced a
double-spend attack and several deep block reorganizations, following a 50% decline in its price and hash rate in
January 2019.



Our study contributes to the literature that has studied PoW blockchain security concerns
from a crypto-coin user perspective (see Lee 2019, for a survey). It has been found that
crypto-coin users value security and internalize and price the risk of a blockchain attack that
could compromise the ability to exchange crypto-coins for goods. Blockchain users who
engage in on-chain transactions value security measured by the amount of computational
power committed to the blockchain; ceteris paribus they prefer more computing power being
committed to the ledger. However, there is little empirical evidence available in this literature
about the economic dependency of the blockchain security (see Abadi and Brunnermeier
2018; Iyidogan 2020; Pagnotta 2020, for theoretical analyses). Moreover, there is confusion
in this literature that the blockchain security would be an embedded property of the

underlying institutional governance’s technology.

To close this research gap, the present study investigates the economic dependency of the
Bitcoin blockchain security. To what extent the digital ledger’s record-keeping security
budgets (measured by mining rewards in a fiat currency nomination) of Bitcoin is correlated
with the cryptocurrency market outcomes? We estimate empirically the extent to which this
relationship is contingent upon economic incentives by using daily Bitcoin data for 2014-
2019 and employ an autoregressive distributed lag approach that allows treating all the

relevant moments of the blockchain series as potentially endogenous.

The paper is organized as follows. The next section presents the testable hypothesis. The third
section presents econometric approach followed by data description. The fifth section

presents the estimation results, while the finial section concludes.
Conceptual Framework: Testable hypotheses

The Bitcoin blockchain mining consists of record-keepers (called miners) of a distributed

network competing for the right to record information about new transactions (in intervals of



around ten minutes) to the digital ledger. Miners have to solve a computationally challenging
problem in order to record information and validate others' reports. Solving the computational
problem (puzzle) is energy intensive and costly. First, miners have to invest in a computer
power, causing fixed costs. Mining involves also variable costs, such as energy (and time) for
the computationally-intense mining process, and a building rent for the location of the mining
equipment. On the revenue side, mining incentives are ensured via rewards for a correct and
secure record keeping. The reward for every block is allocated to the miner that first solves
the computational problem (hash function), by using guess and check algorithms based on the

new and previous blocks of transactions.’

The probability of a miner winning the block’s mining contest (i.e. the right to record a new
block on the ledger and collect the mining reward) depends on a miner’s computer power
devoted for each block relative to the computer power of other miners. Following the mining
models of Thum (2018), Budish (2018) and Ciaian et al. (2021), the total equilibrium
computer power devoted to Bitcoin mining can be expressed as:®

1+y 1

— (LY _ 1) _E®IR |1y
(1) ey = (nt) [Y(nt 1) ct+(p+8)qt]

where m; is computer power per miner (e.g. expressed by the number of computer
operations), n: is the total number of miners, n,m; is the total computer power devoted to the
Bitcoin mining, E(pr) is the expected Bitcoin price, R is mining reward (Bitcoin quantity), c:
is variable costs per computer operation (e.g. energy cost), § is depreciation rate, p is a
discount rate for time preference, y is a transformation parameter (with 0 <y < 0)
determining the odds of winning a block between big and small miners, and g, is purchase

price of one unit of a computer equipment of a given efficiency, .

" For more conceptual discussion see Appendix Al.
8 For derivations in Appendix A2.



Equation (1) implies that the total computer power devoted to the Bitcoin mining increases in
the relative gain from mining, E (p;)R;/(c; + (p + §)q) and that it fluctuates with the
Bitcoin price. Ceteris paribus, higher nominal reward or higher Bitcoin price (costs of
mining) induces miners to invest in more (less) computing resources. The opposite is true
when agents anticipate the value of Bitcoins to be low, miners have lower incentive to invest
in computational resources, the competition and network hash rate decline and the security of
the network decreases. Equation (1) implies that miners have incentives to revert to the
equilibrium level of computer power as a response to Bitcoin price changes because
otherwise miners would experience losses. Further, the total computer power increases at a

decreasing rate in the level (intensity) of miners’ competition, (n, — 1)/n#.

Equation (1) defines the equilibrium behavior of honest miners by pinning down how much
computer power they would allocate to mining for a given value of reward and competition
from other miners. The total computer power devoted to the blockchain mining, n,m,,
determines the security equilibrium of blockchain. The more challenging is the computational
mining puzzle to solve, the safer and more stable is the blockchain’s institutional governance
technology because it becomes more costly for a potentially dishonest miner to conduct an

attack.

A successful attack may adversely affect the perception of Bitcoin by its users reducing the
trust and hence valuation of cryptocurrency. If the reduction of the trust is sufficiently large,
it may cause a collapse in the economic value (price) of Bitcoin. As equation (1) implies, the
amount of computer power for mining and hence the hash rate of the network would reduce,
which might eventually lead to a collapse of Bitcoin blockchain. Thus, the security of Bitcoin
blockchain is dependent on the size of mining reward received by miners which also

determines the total computer power determined in equation (1).

Following these analyses, we can derive three testable hypotheses:



e Hypothesis 1: Security outcomes of the Bitcoin blockchain. If agents anticipate the
value of Bitcoin to be low, miners have little incentive to invest in computational
resources, and the security of the network is low. The opposite is true when agents
anticipate the value of Bitcoin to be high.

Ceteris paribus, the blockchain security is sensitive (elastic) to the mining reward.

e Hypothesis 2: The physical resource cost to write on the Bitcoin blockchain is
intrinsically linked to the cost of preventing attacks; the security of blockchain is
structurally linked to the ledger’s security budget and mining costs.

Ceteris paribus, the blockchain security is sensitive (elastic) to mining costs.
e Hypothesis 3: Ceteris paribus, the Bitcoin blockchain security adjusts quickly to

deviations from the equilibrium.
Estimation strategy

Equation (1) implies that the security (measured by the allocated computer capacity) of the
Bitcoin blockchain depends on mining rewards, the intensity of miners’ competition, mining
costs, discount rate and the computer equipment cost-efficiency. Applying a logarithmic

transformation to equation (1), yields the following equilibrium relationship:
(2) Ye = by + Bx¢ +u,

where y represents the dependent variable — the Bitcoin blockchain security (computer
capacity devoted to mining), 8 is a vector of coefficients to be estimated, x is a vector of
explanatory covariates — mining rewards, p;R;, the number of miners, n;, the intensity of
miners’ competition, (n, — 1)/n?2, the cost of mining (including the discount rate), ¢, +

(p + 6)q; and the commuter equipment efficiency, &;, and u; is an error term.

Equation (2) implies that the coefficients associated with the mining reward and the intensity

of miners’ competition are expected to be positive (number of miners and mining reward



effects in Figure 1). In contrast, the coefficient linked to the cost of mining (energy costs and
discount rate) is expected to be negative (mining cost effect in Figure 1). The computer
equipment cost-efficiency coefficient is expected to have a positive relationship with the
computer power, because everything else constant, higher computing efficiency implies that

less energy is needed to achieve a certain computing hash rate.

Our primary interest is the coefficient associated with the mining reward and the cost of
mining: the former measures the elasticity of the Bitcoin blockchain security (mining network
hash rate) with respect to the mining reward (Hypothesis 1), whereas the later with the
mining costs (Hypothesis 2). They reflect the level of dependency of the security of the

Bitcoin blockchain with respect to Bitcoin market outcomes.

Estimation issues

The estimation of the economic dependency of the blockchain security described by equation
(2) is subject to several econometric issues. Our first concern is the endogeneity problem. The
endogeneity issue is particularly relevant for our data series, as the security outcomes of the
Bitcoin blockchain and the mining reward may be determined simultaneously. For example,
if agents anticipate the value of Bitcoin to be low, miners have little incentive to invest in
computational resources, and the security of the blockchain would be low. In that case,
crypto-coin users may not wish to accumulate large real balances, and the resulting market
valuation for Bitcoin would be low. The opposite would be true when agents anticipate the

value of Bitcoin to be high.

In order to address this endogeneity concern, we employ the Autoregressive Distributed Lag
(ARDL) methodology that is being increasingly used for studying financial markets (e.g.
Stoian and Iorgulescu 2020). We employ the ARDL bounds testing approach developed by

Pesaran et al. (2001) to estimate the blockchain security equilibrium relationship (2) as it



enables to model the long- and short-run relationships simultaneously and has several
advantages over the standard cointegration methods. A key advantage for our analysis is that
the ARDL approach allows treating all the relevant moments of blockchain series as

potentially endogenous.’

In the context of cryptocurrencies, another important advantage of the ARDL approach is that
it permits different numbers of lags for each data series. Contrary to other comparable
cointegration methods, the ARDL methodology does not require testing for the order of
integration; it can be applied irrespective of whether the regressors are purely 1(0), purely I(1)
or mutually cointegrated variables (Pesaran et al., 2001). However, Ouattara (2004) argues
that if I(2) variables are present in the data, the computed F statistics of Pesaran et al. (2001)
become invalid. To make sure that none of the variables is integrated of order 1(2) or beyond,
we test the stationarity of series and their first differences using the augmented Dickey—Fuller
(ADF) test, the Dickey—Fuller GLS test (DF-GLS) and Phillips—Perron (PP) test. The
appropriate number of lags for the series is determined by the Akaike Information Criterion.
Accordingly, the role of the Bitcoin mining reward and the proof-of-work cost for each of the
respective moments can be estimated after accounting for the information embedded in the

lags of the entire distribution of blockchain security outcomes.

Another concern is a potential errors-in-variables problem because part of the series is
obtained from primary non-harmonized data sources and it is difficult to judge how reliable
these series are. In particular, this concerns those series that are not recorded on blockchain,
such as, mining cost data. Indeed, the time series measuring variable mining unit costs in
different world regions are collected by using different sampling methodologies and different

weights. Some of these issues can be overcome by first differencing the data. Nevertheless,

% As noted by Pesaran and Shin (1999, p. 16), the use of ARDL is well suitable to address the endogeneity problem:
“appropriate modification of the orders of the ARDL model is sufficient to simultaneously correct for residual
serial correlation and the problem of endogenous regressors’’.
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part of potential errors-in-variables issues remain. To address the remaining potential errors-
in-variables issues, we construct alternative proxies for measuring the dependent variable —
blockchain security — and key explanatory variables — mining competition — and estimate

these otherwise identical mining models for robustness.
Econometric strategy

The ARDL bounds testing procedure is applied to test the existence of a long-run
relationship. The general form of an ARDL(g, z,.....,z) model is standard and follows the

literature:

(3) Ve = by + Zle GYe—1+ Xizo BiXe—1 + Us

where y represents the dependent variable — security (computer power) of mining, x is a
vector of independent variables — mining rewards, intensity of miners’ competition, energy
costs, discount rate and the commuter equipment efficiency, g is the number of optimal lags
of the dependent variable and z represent the number of optimal lags of each explanatory

variable.

Pesaran et al. (2001) has proposed two types of critical values for a given significance level.
The first type assumes that all variables in the model are I(1), whereas the other assuming
that all series are I(0). If the computed F statistic is below the lower bound, the null
hypothesis of no long-run relationship fails to be rejected. In such case, an ARDL model in
first differences without an error correction term should be estimated. If the F-statistic lies
between the two bounds, the result is inconclusive. If the computed F-statistic exceeds the
upper bound, the null hypothesis of no cointegration is rejected. In this case, the error

correction model to be estimated is:

(4) Ay, = by — a(y,—1 — 0x,) + Zig=_11 YyiAye_;i + Y20 Yailhxe; + uy

11



where 6 represent the long-run coefficients, y are short-run multipliers and a shows the speed
of adjustment of the dependent variable to a short-term shock. It measures how quickly the

blockchain security adjusts to deviations from the equilibrium (Hypothesis 3).

Following the standard procedure in the literature (Pesaran et al. 2001), we apply a set of
diagnostic tests, as the validity of ARDL results is based on the assumption of normally
distributed error terms, no serial correlation, heteroscedasticity and stability of the
coefficients. The empirically estimable specification of the models and the number of lags is
determined in accordance with the results of diagnostic tests, including Breusch-Godfrey LM
test and Durbin’s alternative test for autocorrelation, Breusch-Pagan/Cook-Weisberg test for

heteroscedasticity, normality testing and cumulative sum test for the parameter stability.
Data

In empirical estimations, we use daily data for the period 27/12/2014 — 4/9/2019. The details
of data series used in estimations and their sources are reported in Table 1. All time-series are
transformed in a log-form in the estimations, implying that the estimated coefficients can be

interpreted as elasticities. Table 2 provides a descriptive statistic of the data used.

Our main dependent variable measuring the computer power devoted for mining is hash rate
and is represented in average daily hashes per second.'® For robustness, we also consider the
mining difficulty as an alternative dependent variable which measures the effort required to

mine a new block for the blockchain.

Following equation (2), our independent variables include the number of miners and the
derived competition intensity, (n, — 1)/n?. We also consider alternative proxies for

competition intensity — Herfindahl-Hirschman index (/4hi) and normalized Herfindahl-

10 Hash rate measures the speed at which mining machines operates. Usually, the hash rate is expressed in hashes
per second (h/s). For example, a mining machine operating at a speed of 100 hashes per second makes 100 guesses
per second.'” Thus, the hash rate measures how much computer power the Bitcoin network is deploying to
continuously solve the computational problem and generate/record blocks.

12



Hirschman index (hhi normalised) — in order to account for unequal distribution of computer
power between different miners. The variable mining reward is measured as the average daily
value of the reward per block calculated by dividing the total mining reward per day (in US
dollars) by the total number of blocks per day!!. To measure a region-specific cost of mining,
we use electricity prices in Europe (electricity Europe), China (electricity China) and North
America (electricity N. America). We proxy discount rate with the US 10-year treasury
constant maturity rate (/0-year-treasury). Finally, the mining equipment efficiency is proxied
with the most efficient mining hardware available in each time period measured by the
energy efficiency of the hardware (Zadé and Myklebost 2018; CBEI 2019; Delgado-Mohatar,
Felis-Rota and Ferndndez-Herraiz 2019). All variables are used in a log-form in the

estimations, implying that the estimated coefficients can be interpreted as elasticities.
Results

We start with checking the stationarity properties of our time series, as the ARDL procedure
requires all variables to be either 1(0) or I(1). The results of the Augmented Dickey-Fuller
test, the Dickey—Fuller GLS test (DF-GLS) and the Phillips—Perron (PP) test indicate that

there is no variable integrated of the second order and thus we can apply the ARDL approach.

Table 3 summarizes the three estimated mining models with different specification of
explanatory variables and for each of the three models we include two sub-models with
alternative measures of the Bitcoin blockchain security, i.e. hash rate and difficulty. The three
estimated mining models differ by the proxy measuring the computer intensity. Model 1 uses
competition intensity variable, (n, — 1)/n?, as derived in equation (1), whereas models 2 and

3 use the two alternative proxies for competition intensity: the Herfindahl-Hirschman index

! Mining reward contains the total value of coinbase block rewards and transaction fees paid to miners.
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(hhi) and normalized Herfindahl-Hirschman index (hhi normalised), respectively. The rest of

variables are the same across all estimated mining models.
Long-run economic dependency of the Bitcoin security

Mining rewards. In line with theoretical expectations, the ARDL estimation results confirm a
long-run structural relationship between the mining reward and security outcomes of the
Bitcoin blockchain (Table 4). This holds for both variables measuring the computer power
devoted to mining, hash rate and difficulty, and across all estimated models. The estimated
elasticities corresponding to the mining reward variable are in the range between 1.4 and 2.0,
suggesting an elastic response in the mining computer capacity to permanent changes in the
mining reward. That is, a 1% permanent increase in the mining reward increases the
underlying blockchain security by 1.4% to 2.0% in the long-run. Hence, our estimates fail to
reject Hypothesis 1: the Bitcoin security is overly sensitive (elastic) to Bitcoin mining reward.
A change in the payoff from mining causes a more than proportionate change in the Bitcoin

security.

Given that usually mining costs are incurred in standard fiat currencies (e.g. US dollar, Euro),
the value of the mining reward fluctuates with the price of Bitcoin'? which in turn affects
mining reward and mining incentives. Thus, if the expected Bitcoin price decreases, lower
mining incentives reduce the equilibrium computer mining capacity and hence the Bitcoin

security. The reverse is valid in the case of a positive Bitcoin price shock.

Proof-of-work costs. As regards the variable mining unit costs and security outcomes of
blockchain, the results are more nuanced. As explained above, to measure a region-specific

the cost of mining, for the variable construction we have used separate electricity prices for

12 Note that the change in Bitcoin price is the main factor deriving the change in the value of mining reward
because according to the algorithm the quantity of mining reward in Bitcoins, R;, changes (halves) only
approximately every 4 years, whereas Bitcoin price changes daily.
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Europe, China and the North America. The estimation results for the world global mining
leader China'® — 65% of the global Bitcoin hash rate are concentrated in China — imply a
statistically significant and positive relationship between the security of the underlying
blockchain and the proof-of-work cost (models M2.1 to M3.2). The estimated variable
mining unit costs coefficients the North America are statistically significant and negative in
models M1.1, M2.1. and M3.1. For Europe, the mining cost coefficients are statistically
insignificant. One explanation for these mixed results could be that the intensive margin of
mining is larger in China, where all major mining pools are located. A declining number of
miners might actually not reduce the mining network hash rate, if those individual miners
join the rapidly growing miner pools. Parra-Moyano, Reich and Schmedders (2019) find an
empirical evidence for learning by mining, which results in a decreasing extensive margin of
mining and an increasing intensive margin of mining. Second, our estimates capture other
long-term behavioral effects of miners induced by a permanent change in electricity prices
such as shifting mining location to places with cheaper energy (e.g. to remote regions of
China, from mainland Europe to Iceland to harvest geothermal power).'* Such long-term
behavioral effects may actually increase computer power, if the energy savings more than
offset the price increase. Finally, these results may also reflect the fact that the mining input
cost data (which are location-specific) are considerably less reliable than the mining reward

data, which are publicly available for every single historical Bitcoin transaction.

Based on these ARDL bounds testing results, we cannot provide a robust answer regarding
Hypothesis 2. Instead, these results call for further analysis using more disaggregated

location-specific mining cost data, given that the effect of electricity prices in North America

13 https://news.bitcoin.com/65-of-global-bitcoin-hashrate-concentrated-in-china/

14 https://www.vox.com/2019/6/18/18642645/bitcoin-energy-price-renewable-china
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is in line with expectations as derived in equation (1), whereas the opposite relationship is

found for the electricity prices in China.

Competition and network externalities. The variables measuring the miners’ competition
level have a negative impact on security outcomes of the Bitcoin blockchain; all estimated
coefficients are statistically significant. These results suggest that a permanent increase in the
competition intensity exercises a downward pressure on the mining computer power in the
long-run. As discussed in Appendix A.1.2, digital distributed ledgers such as blockchain are
subject to a number of network externalities. When new miners enter the mining of
blockchains, two types of direct network externalities related to the blockchain security arise,
one positive and one negative. The positive network externality implies that the blockchain
security is increasing with the number of miners, because each additional node reinforces the
chain’s security. In line with the previous literature (Waelbroeck, 2018), the negative network
externality occurs because each individual miner invests in the mining-computing power,
which increases both the individual miner’s marginal income though also mining costs, as the
difficulty of the computational problem increases in the number of miners and their
computing power (“hash-power”). Increasing the difficulty of mining reduces the incentives
for mining and — in the presence of learning by mining — increases the concentration of
mining activities, reducing in such a way the blockchain security. Our estimates suggest that
the negative network externality dominates of the positive network externality. Our results
are in line with those of Parra-Moyano, Reich and Schmedders (2019) who find that the
probability of winning a mining contest increases with the miner size. This motives miners to
join mining pools to increase their probability to win the mining contest and receive reward. '3

Indeed, our competition proxy variables are constructed based on the observed number of

15 Other benefit of joining mining pools is that it creates a steady stream of income, rather than greater income but
at lower frequency (i.e. due to lower odd of winning the mining contest) with individual mining (Liu and Wang
2017).
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miners but not on the number of members within mining pools. And since a greater
competition may imply fewer miners (because many individual miners join mining pools),
the implied actual long-run relationship between the competition intensity and mining power

becomes negative.

Hardware efficiency. In line with the theoretical model, the hardware efficiency variable has
a statistically significant negative impact on the mining computer power in models M1.1,
M1.2 and M3.1. The estimation results imply that an increase in the efficiency of mining
equipment (decrease in the input units of the mining hardware efficiency per security output
unit) leads to an increase of security outcomes of the Bitcoin blockchain in the long-run. The
estimated elasticities vary between -0.6 and -0.8, implying that a 1% permanent increase in
the efficiency of mining equipment increases the mining computer power in the long-run by
between 0.6% and 0.8%. Hence, the Bitcoin blockchain mining security is dependent of the

mining technology available at a given point of time.

Time preference. The 10-year-treasury variable, which is a proxy for the discount rate, has a
statistically significant positive impact on the mining computer power. This result could be
explained by the fact that the /0-year-treasury actually captures a miner investment
competition effect (i.e. an alternative financial asset return). As far as Bitcoin is perceived as
an investment asset, shocks to competing financial asset returns (including /0-year-treasury)
are expected to impact positively miners’ choices to invest in the mining of Bitcoin. Our
results confirm that Bitcoin is perceived by miners to be competing for investment with other
financial assets and thus need to deliver a competitive return. The return arbitrage among
alternative investment opportunities implies a positive price relationship between Bitcoin and
alternative financial assets (Murphy 2011; Ciaian, Rajcaniova and Kancs 2018). Thus, the

positive coefficient estimated for the /0-year-treasury variable implies that miners are

17



motivated to invest in more computer power for mining when the returns to financial assets

increase.

The estimates of the error correction term — which measures the speed of adjustment of the
short-run dynamics of mining to the long-run equilibrium path — are statistically significant
across all models. The error correction terms vary between -0.002 and -0.009. This means
that between 0.2% and 0.9% of the long-run disequilibrium in mining power is corrected by
the short-run adjustment the same day. Or the disequilibrium corrects at a speed of
convergence of between 0.2% and 0.9% per day. In terms of the duration, any deviation from
the long-run equilibrium is corrected in around 111 to 453 days (or in 0.30 to 1.24 years).
These results provide support for Hypothesis 3 that security outcomes of the Bitcoin

blockchain adjust to deviations from the long-run security equilibrium.
Short-run economic dependency of the Bitcoin security

Generally, short-run results are less significant across the estimated ARDL models than long-
run results (Table 5). Contrary to our expectations, there is some support that the mining
reward affects negatively the mining computer power in the short-run. However, the
estimated elasticity is rather small. A 1% positive shock in the Bitcoin mining reward (the
third lag) decreases the mining computer power in the short-run by between 0.014% and
0.020%. This negative relationship between the mining reward and mining power could be a
result of other effects such as switching mining to other cryptocurrencies (e.g. to Bitcoin

cash) when the relative price of Bitcoin to cryptocurrencies decreases.'® These findings also

16 There is some evidence of asymmetric change in Bitcoin and altcoin prices: shocks to altcoins prices tend to be
greater than Bitcoin price shocks (Reiff 2018; Cheikh, Zaied and Chevallier 2020). This implies that the relative
prices of Bitcoin to altcoins are inversely related with the Bitcoin price changes which may incentivize miners to
shift some Bitcoin computer power to mining altcoins when Bitcoin price increase, and shift back the computer
power to Bitcoin mining when Bitcoin price declines. Note that the shift in mining between different cryptos is
less relevant for ASIC mining hardware, commonly used for Bitcoin mining, which is more efficient in mining
specific cryptocurrencies (specific cryptographic hash algorithm) and cannot be used for mining other types of
cryptocurrencies.
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tend to support the Hypothesis 1: although an inverse relationship is found, the security
outcomes of the Bitcoin blockchain shows sensitivity to Bitcoin mining reward even in the
short-run. This short-run inverse relationship could be caused by secondary spiral effects
induced by Bitcoin price changes — decrease (increase) — as suggested by Kroll, Davey and
Felten (2013), through the subsequent loss (gain) of confidence (thrust) in Bitcoin when
Bitcoin mining power decreases (increases) which might further reduce (increase) the Bitcoin

price.

As expected, the variables measuring mining competition level (number of miners,
competition intensity) have a statistically positive impact on the computer power in models
MI1.1, M1.2, M.2.2 and M3.2. These results suggest that in the short-run, the competition
among miners stimulates deployment of more mining equipment in line with the model
derived in equation (1). These results are in contrast to the long-run estimates. While in the
short-run the miners’ competition leads to expansion of the Bitcoin mining power, in the
long-run the inverse relationship is valid indirectly suggesting reduced competition level as

individual miners have the incentive to join mining pools.

In line with the theoretical expectation in equation (1) the electricity prices in China have
statistically negative impact on the computer power outcomes of the Bitcoin blockchain in
the short-run in models M1.1, M2.1 and M3.1. The reverse relationship was estimated in the
long-run, where permanent increase in the electricity prices in China led to an increase in the
mining power suggesting that other structural changes in miners’ behavior might take place
when the cost changes are permanent. The estimated variable mining electricity costs for

North America and Europe are statistically insignificant in the short-run. These findings

16 https://www.vox.com/2019/6/18/18642645/bitcoin-energy-price-renewable-china
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support the Hypothesis 2 that the security outcomes of the Bitcoin blockchain is sensitive to

mining costs.

The lagged dependent variables (hash rate and difficulty) are statistically significant across all
models. Their coefficients vary between -0.04 and -0.46. The relatively high values of these
coefficients indicate that the short-run shocks in the mining computer power disappear over
time relatively fast: in around 2.2 to 28.6 days. These results support the Hypothesis 3 that
the security outcomes of the Bitcoin is sensitive to Bitcoin market outcomes in the short-run

to fluctuations with instant shocks disappearing over a short time period (within few days).

The short-run effects of electricity prices, hardware efficiency, 10-year-treasury and
alternative proxies for competition intensity cannot be examined due to the ARDL

specifications, as no lags of these dependent variables entered the model.

Discussion and concluding remarks

Alongside being a new innovative information and computation technology, blockchain also
introduces a new institutional governance technology that makes possible the enforcement of
contracts, ownership rights and development of distributed autonomous organizations.
Bitcoin blockchain offers an example where the institutional governance system (i.e. the
security of the enforcement of property rights and contracts) is endogenously determined by
its underlying transaction validation algorithm. This is in a sharp contrast to the traditional
centralized institutional governance systems which face many impediments to bring about
dynamic institutional changes. While an institutional innovation (creation of institutions) is
desirable, the institutional deterioration (destruction of institutions) is not. Sustaining
economic transactions built on the Bitcoin blockchain requires to have in place a correct and
secure system of verification and enforcement of property rights and contracts. As a result,

the security and correctness of the verification and enforcement system should portray a

20



certain neutrality from the fluctuation of economic market outcomes executed on the Bitcoin
blockchain in order to reduce a potential risk of adverse attacks and a subsequent loss of trust

among blockchain users.

The present paper studies the economic dependency of the Bitcoin security of the
enforcement quality on the underlying economic incentives defined within its validation
algorithm. We apply time-series analytical mechanisms using data for the period 27/12/2014
—4/9/2019 to estimate the responsiveness of Bitcoin security to the economic incentives both
in the short- and long-run in order to provide empirical understanding for three tested
hypothesis: the Bitcoin security is dependent on the mining reward (Hypothesis 1), security
outcomes of the Bitcoin and the proof-of-work cost (Hypothesis 2) and any disequilibria in
Bitcoin security revert back to its equilibrium relatively fast (Hypothesis 3). We employ an
autoregressive distributed lag approach that allows treating all the relevant moments of the

blockchain series as potentially endogenous.

Our results suggest that the Bitcoin price and mining rewards are intrinsically linked to
blockchain security outcomes. Results for mining costs are geographically differenced — they
are more significant for the global mining leader China than for other world regions. The
estimates for the speed of adjustment of the Bitcoin security suggest that any disequilibria
revert back to its equilibrium relatively fast. Based on the ARDL bounds testing results, we
fail to reject Hypothesis 1 and 3, suggesting that Bitcoin security is highly responsive to
permanent shocks in mining reward and its adjustment to the permanent and short-term
shocks is relatively fast. In the long-run, we find an elastic (between 1.4 and 2.0) and positive
response in Bitcoin mining computer power to permanent change in mining reward, while in
the short-run, the elasticity is smaller and the relationship is negative (between -0.014% and -
0.020%) (Hypothesis 1). Further, any deviation in Bitcoin mining computer power from the

long-run equilibrium is corrected in around 0.30 to 1.24 years, whereas the short-run shocks
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disappear in around 2.2 to 28.6 days (Hypothesis 3). Regarding the Hypothesis 2, we find
some support that the mining costs (i.e. electricity prices) impact the Bitcoin mining power
and thus its security but the results are not robust across estimated models and the sign of
estimated effects is not always consistent with theoretical expectations. This could be
explained by the fact that the permanent shocks occurring to the electricity prices might have
been accommodated by miners through other behavioral changes (e.g. relocation of mining to
locations with less expensive electricity). Further, our estimates show that the Bitcoin
security is dependent on the competition intensity among miners and the efficiency of the
mining technology. The competition intensity among miners leads to shot-run increase in
mining computer power, whereas the reverse is valid in the long-run likely due to the
structural changes taking place in mining whereby individual mining is replaced in favor of
concentration of computer power to a relatively small number of mining pools. As regards
the mining technology, its improvement is found to stimulate the expansion in mining
computer power and thus can undermine the Bitcoin security in future if, e.g., a strong

innovation would take place in the computing technology (e.g. Quantum Computers).

The findings of this paper challenge the entire Bitcoin security model. Our results suggest
that the Bitcoin blockchain security is highly sensitive to the reward system which
incentivizes distributed network participants to provide validation and enforcement services
by making available their computer capacity. As the ARDL estimates show, these services
are highly responsive and adjust fast to the internal Bitcoin economics (i.e. to changes in the
mining reward). This may pose problems particularly in low-security equilibriums when the
mining reward value declines. In such a situation, the incentives for supplying security
services descrease and may make the transactions executed on Bitcoin blockchain vulnerable
to potential attacks. The Bitcoin security is sustainable only if the value of reward increases

over time particularly given that by design of the Bitcoin algorithm, the reward is halved
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approximately every 4 years (every 210,000 blocks). This is reinforced by the fact that the
innovations in the computing technology may significantly reduce the cost of supplying
computer power and thus might also undermine Bitcoin strength against potential hostile
attacks. Hence, in the medium-run, the entire security concept of the Bitcoin may need to be
redesigned in order to reduce as much as possible its vulnerability to proof-of-work costs and
cryptocurrency market outcomes. Otherwise, the Bitcoin blockchain might fail to generate a
sufficient trust to provide incentives that would attract economic agents to develop activities

on the distributed ledger and thus to stimulate the growth of the distributed digital economy.
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Table 1. Data sources

Variable Unit Name of variable Source Description
Dependent variables
hash rate Hash/second Total computer power bitinfocharts.com
difficulty Average difficulty Mining difficulty bitinfocharts.com
per day
Explanatory variables
number of miners No Number of miners, n; blockchair.com Number of miners, total
competition intensity ~ Index Competition intensity Calculated: (n, — 1)/n? Calculated based on
n_miners_t
(n_miners_t — 1)/
(n_miners_t*n_miners_t)
hhi Index Herfindahl-Hirschman Calculated based on n, and
index hashrate
hhi normalised Index Normalised Herfindahl-  Calculated based on on n;
Hirschman index and hashrate
mining reward USD per block Mining reward per blockchair.com Total mining reward per day
block (in USD) divided by the total
number of blocks per day
reward_usd/ no_bl_total
electricity Europe EUR/MWh European Electricity WWW.epexspot.com
Index
electricity China USD/kWh Chengdu's Usage Price www.ceicdata.com
Electricity for Industry,
USD
electricity N. America CAD/MWh Electricity price in reports.ieso.ca
North America
10-year-treasury % 10-Year Treasury fred.stlouisfed.org 10-Year Treasury Constant
Constant Maturity Rate Maturity Rate (DGS10)
(DGS10)
hardware efficiency J/Giga hash Mining equipment Constructed based on: Zadé  Bitcoin mining hardware

efficiency and Myklebost (2018), generation (most efficient

CBEI (2019) and Delgado- device in each time period),
Mohatar, Felis-Rota and J/Giga hash
Ferndndez-Herraiz (2019)

Table 2. Descriptive statistics of used data

Variable Obs Mean Std. Dev. Min Max

hashrate 3,174 38.313 5.995 25.442 45.905

difficulty 3,174 22.456 6.020 9.581 30.008

number of miners 3,174 2.691 0.881 0.000 3.526

competition intensity 3,174 -3.144 1.018 -6.908 -1.386

hhi 3,174 -1.638 0.720 -2.608 0.000

hhi normalised 3,174 -1.958 0.860 -3.176 0.000

mining_reward 3,174 8.732 2.252 -0.692 12.794

electricity Europe 3,174 3.505 0.876 -6.908 4.891

electricity China 3,174 -2.179 0.063 -2.402 -2.113

electricity N. America 3,174 2.554 1.944 -6.908 5.617

10-year-treasury 3,174 0.827 0.208 0.315 1.322

hardware efficiency 3,174 0.151 2.943 -3.219 6.240
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Table 3. Specification of the estimated models

Mil1.1 M1.2 M2.1 M2.2 M3.1 M3.2
hashrate X X X
difficulty X X X
Explanatory variables
number of miners X X X X X X
competition intensity X X
hhi X X
hhi normalised X X
mining reward X X X X X X
electricity Europe X X X X X X
electricity China X X X X X X
electricity N. America X X X X X X
10-year-treasury X X X X X X
hardware efficiency X X X X X X

Table 4. Estimation results: long-run impacts

Mil.1 M1.2 M2.1 M2.2 M3.1 M3.2
number of miners -0.154 -0.108 -2.911%%* -3.910%%%* -2.415%%%* -3.462%%%*
competition intensity -1.203%#%%* -1.197#%%*
hhi -3.707%* -5.996%**
hhi normalised -2.285%* -4.376%%*
mining reward 1.398#%#%* 1.670%** 1.373%%* 1.988%#** 1.379%%%* 1.988%**
electricity Europe -0.234 0.136 -0.338 0.161 -0.337 0.185
electricity China 3.643 4.415 11.095%* 12.605%%* 13.874%%* 19.150%**
electricity N. America -0.135% -0.060 -0.218%* -0.118 -0.235%* -0.145
10-year-treasury 2.204%* 2.691%** 5.125%** 5.457%%* 5.763%** 7.081 %%
Hardware efficiency -0.799%#* -0.588%*#* -0.563 0.138 -0.663* 0.080
Error correction term
hash rate (-1) -0.009%* -0.007+* -0.007+*
difficulty (-1) -0.003+* -0.002%* -0.002¢*
Speed-of-adjustment (days) 111 333 147 407 151 453

Dependent variables are hash rate (M1.1, M2.1, M3.1) or difficulty (M 1.2, M2.2, M3.2); Speed-of-adjustment is calculated
based on error correction rate.

***gignificant at 1% level, **significant at 5% level, *significant at 10% level. Empty cell indicates absence of a variable in
the respective model.
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Table 5. Estimation results: short-run impacts

MI.1 M1.2 M2.1 M2.2 M3.1 M3.2
A hash rate (-1) -0.440¢ %% -0.428+* -0.429%%*
A hash rate (-2) -0.455¢#% -0.443%* -0.444%%*
A hash rate (-3) -0.320%* -0.305%* -0.306**
A hash rate (-4) -0.221¥%% -0.206%* -0.205%*
A hash rate (-5) -0.166%+* -0.151%* -0.150%*
A hash rate (-6) -0.1048%%* -0.091%%* -0.090%**
A hash rate (-7) -0.075%#* -0.064** -0.066**
A difficulty (-1) 0.200%* 0.212k** 0.213#**
A difficulty (-2) -0.142%%* -0.142¢%%* -0.1427%%*
A difficulty (-3) -0.040* -0.0365* -0.035
A difficulty (-4) -0.073** -0.072¢%%* -0.071%#%*
A difficulty (-5) -0.056*%* -0.055%** -0.054%*%*
A difficulty (-6) -0.052%%* -0.049%+%* -0.049%*%*
A difficulty (-7) -0.059** -0.055%** -0.054%*%*
A number of miners -0.002 -0.003
A number of miners (-1) 0.075¢%%* 0.074%*%*
A number of miners (-2) 0.091¥*%* 0.090%*%*
A competition intensity 0.010 -0.001
A competition intensity (-1)  0.066F** 0.032%*
A competition intensity (-2)  0.040¢%* 0.033**
A mining reward -0.019¢#% -0.001 -0.017* 0.000 -0.017* 0.000
A mining reward (-1) -0.020F#* -0.003 -0.002 -0.016* -0.002
A mining reward (-2) 0.000 0.001 0.001
A mining reward (-3) -0.014%* -0.014k%* -0.014**
A mining reward (-4) -0.015%* -0.015%** -0.015%*
A electricity China -1.246¢* -1.256* -1.243*
constant 0.289¢** 0.046 0.357+* 0.078** 0.387+** 0.099%**

Dependent variables are hash rate (M1.1, M2.1, M3.1) or difficulty (M1.2, M2.2, M3.2);
***significant at 1% level, **significant at 5% level, *significant at 10% level. Empty cell indicates either absence of a
variable in the respective model or the coefficient or the variable is not selected in the estimation; A is difference.
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Figure 1. Interdependency between Bitcoin price, mining costs and mining security

Mining reward effect (+) increases network equilibrium security

T Bitcoin T mining T number T hash 1T security | attack
price reward miners rate of ledger probability

1 mining 1 mining 1 number L hash 1 security 1 attack
costs profits miners rate of ledger probability

Mining cost effect (-) reduces network equilibrium security

Source:

Conceptual framework (section 2 and Appendix. A.1 Model of the Bitcoin mining).

Figure 2. Dynamics of the Bitcoin price, mining reward, hash rate and network difficulty

Source:
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Appendix. A.1 Model of the Bitcoin mining

In this Appendix we show a theoretical model to determine equilibrium relationships between Bitcoin
blockchain security, market outcomes and resources devoted to the blockchain mining. Building on the mining
models of Thum (2018), Budish (2018) and Schilling and Uhlig (2019), we model a rational miner i that decides
on the quantity of computer power, m; (e.g. expressed by the number of computer operations), to devote for
mining each Bitcoin block ¢ (represented in block time measured in 10 minute interval which is the average time

needed to mine a block in blockchain). The mining output is measured in capacity of blockchain security units.

The probability of miner i winning the contest (i.e. the right to generate a new block and collect reward) depends
on his/her computer power devoted for each block relative to the computer power of other miners. Previous

studies assume that the probability of winning the contest and validating a block is independent of the miner

ne

size: mye/(mie+3 ;L mj¢ ), where n, is the total number of miners and ), i

i m;; is the total computer power of other

miners devoted to the block 7 (e.g. Cocco and Marchesi 2016; Thum 2018; Schilling and Uhlig 2019). However,
Parra-Moyano, Reich and Schmedders (2019) show that the probability of relatively bigger miners winning the

mining contest is higher than that of relatively smaller miners because there is a “learning" effect when mining a
particular block with larger mining computers learning faster than smaller mining computers. To account for the

learning by mining, we assume the following transformation of the probability for a miner winning a block:
Y
™t /<em]i/t+2;‘;iemit>, where y is a transformation parameter (with 0 < y < 0), which implies that the ratio of

odds between big and small miners (mining computers) of winning a block increases with the miners’ size, mj,

while keeping the ratio of miner’ size between miners fixed.

The purchase price of one unit of a computer equipment of a given efficiency, &, is denoted by q;. The
successful miner receives reward p;R;, where R; is Bitcoin quantity and p; is Bitcoin price per one unit expressed
in monetary values (e.g. US dollar). Miner i chooses computer power, m;, for a given computer efficiency, &, so

that to maximize the present discounted value of the flow of profits over the infinite time horizon:

¥
1\¢ ™t
(5) T =Yy (_) . : s E(PRe — cemyr — qelie | — F

14p Y /
emlt+Z;};ie Jjt
Subject to m;;,, units of computer power:

(6) Mippr = (1 = Omye + Iy
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where ¢, is variable costs per computer operation (e.g. energy cost), E(p) is the expected Bitcoin price, & is
depreciation rate, I;; is investment in computer equipment, F are one-time fixed costs (e.g. building), and p is a
discount rate for time preference. Deviations from the expected price are random shocks, v, with an expected
value of zero: E(p,) = p;”, where p, = p,* + v. We assume a rational price expectation framework of Muth (1961)
in which miners base their Bitcoin price formation on all the available information at the time when making
their decisions on the investment in m;. Miners are identical, risk-neutral, non-cooperative and profit-driven

agents that invest according to the anticipated real value of block rewards.

Maximizing miner i’s profits for the given computer power of all other miners yields the following optimal

conditions:
1
(7) —q: + mltu =0
y-1_m! ong th
ymi Ltz. l.e ] 1
(8) ty = 72 E(p)R, — ¢, + T+p (1 =8y = 4
(emit+z;zigmjt)
(9) Mippr = (1 = Omye + Iy

where A, is a shadow price for a unit computer power.

Assuming a steady state equilibrium with m;; = my, R, = Ry, E(p:) = E(p)), 9 = q;, and n, = n; for t # 1
and a symmetric equilibrium with m;, = mj;, the equilibrium computer power per miner can be derived from
equations (7) to (9) as follows:

1
_[yme-1) E@oR: |17
(10) M= T crtoroa

Rewriting equation (10) in terms of the total computer power devoted to mining, n,m;, yields the mining
equilibrium:

1+y

1
_ (1 1y _ E(p)Re |1y
(11) ey = (nt) [Y(nt 1) ct+(p+6)qt]

Equation (11) implies that the total computer power increases in the relative gain from mining,
E(p:)R;:/(c; + (p + 8)q). The mining equilibrium implies that the computer power devoted to mining
fluctuates with the Bitcoin price. This model feature reflects the intuition that, ceteris paribus, higher nominal

reward or higher Bitcoin price induces miners to invest in more computing resources. The opposite is true when
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agents anticipate the value of Bitcoins to be low, miners have little incentive to invest in computational

resources, and the security of the network is low.

Second, the mining equilibrium (11) implies that the total computer power increases at a decreasing rate in the

level (intensity) of competition, (n, — 1) /n?.

Third, equation (11) implies that miners have incentives to revert to the equilibrium level of computer power as

a response to Bitcoin price changes because otherwise miners would experience losses.

We follow Abadi and Brunnermeier (2018) and assume a free entry equilibrium where miners enter until profits
are driven to zero. In the blockchain system, miners don’t compete in prices but in capacity, similar to Cournot-
type firms. An increase in the processing power of competing miners results in the expansion of the total
computing capacity. In the presence of network externalities, free entry of miners serves to pin down the

strength of the security.

Using equations (9) and (10), it is possible to derive the equilibrium number of miners, n;, depending on mining

returns, variable costs, fixed costs and the level (intensity) of competition, (n, — 1)/n?:

1
_ y(ne—1) E(@)R |17V
(12) n. = E(p)R./ (PF + (¢: + 6q,) T 7Ct+(l)+5)‘h:| )

Fixed costs are related to credit constraint and rigidities to increase capacity related to financing the entry costs

into the mining.

Equations (7) to (11) define the equilibrium behavior of honest miners by pinning down how much computer
power they would allocate for mining for a given value of reward and competition from other miners. The total
computer power devoted to the blockchain mining, n,m;, determines the security of blockchain. As discussed
above, the more challenging is the computational mining puzzle to solve, the safer and more stable is the
institutional governance technology because it becomes more costly for a potentially dishonest miner to conduct
an attack. Such an attack may adversely affect the perception of Bitcoin by its users reducing their trust and
hence valuation of the cryptocurrency. If the reduction of the trust is large, it may cause a collapse in the
economic value (price) of Bitcoin. As equation (11) implies, the amount of computer power for mining and
hence the hash rate of the network would reduce, which might eventually lead to a collapse of Bitcoin
blockchain. Thus, the security of Bitcoin blockchain is dependent on the size of mining reward received by

miners which also determines the total computer power determined in equation (11).
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A.2.1 Blockchain security and attacks

The probability of a (successful) attack on blockchain is reflected in the underlying ledger’s security, it is
inversely related the blockchain’s security budget. This probability is driven by the balance of computing power
between an attacker and honest miners. As noted by BitcoinWiki (2019), “Bitcoin's security model relies on no
single coalition of miners controlling more than half the mining power”."” A miner who controls more than 50%
of the total mining network computer power could exercise attack on blockchain that involves the addition of
blocks that are somehow invalid or reverse previous accepted transactions (“majority attack™). Either the blocks
contain outright fraudulent transactions, or they are added somewhere other than the end of the longest valid
chain. A successful majority attacker could prevent (for the time that the attacker controls mining) confirmation
of new transactions (e.g. by producing empty blocks) and reverse own transactions which potentially allows
double-spending thus affecting all transactions that share the history with reversed transactions (BitcoinWiki

2019).

In our model, to control a majority power, equation (11) implies that an attacker must control more than 50% of
the total mining network computer power, An,m;, where A > 1. If we assume that the attack takes the duration
equal to s block time, then the attacker’s costs'® are sA(cn,m; + q.n.1;) — (1 — 8)gn,m; and the mining
reward during the attack is sp;R;, where 6 (0 < 8 < 1) represents the proportion of the mining technology, m;,
that can be recovered (reused, resoled, repurposed) after the attack.'” The first term of the attacker’s costs,
sA(c,ngm; + qngl.), includes energy and investment costs, while the second term, (1 — 8)gn,m;, represents

the loss related to the part of mining technology that cannot be recovered after the attack.

To des-incentivize and deter attacks on blockchain, the cost of an attack must be greater than the potential gain
from an attack. Using the optimal condition (9), this implies the following incentive compatibility condition for

blockchain against attacks:

(13) sAnm’[(c; + q,8) — (1 — 0)q,] = (1 — A)SE(p)R, + V4(8)

17" Although Bitcoin has not suffered from a majority attack, a number of Altcoins were subject to successful
attacks in the past. For example, this was the case of the Bitcoin hard fork (Bitcoin Gold) in May 2018 (stealing
$18 million worth of Bitcoin and other cryptos), Ethereum Classic (ETC) in January 2019 (double spending to
over 200,000 ETC worth around $1.1 million), and Verge (XVG) was attacked several times in 2018 (with the
biggest attack extracting about 35 million of XVG) (ViewNodes 2019).

18 According to Crypto51 (2020), the theoretical cost of a 51% attack on Bitcoin is $ 413,908 per one hour.

19 Note that if Bitcoin does not collapse after the attack, the mining equipment can be reused in continuing mining
Bitcoin.
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where A (0 < A < 1) is the proportional decrease in the price of Bitcoin after the attack and Vj is the expected
payoff of the attack which is dependent on A and is equal to the sum of gains, V;(A), obtained over the duration
of attack s with V,(A) = ¥V, (A).?° The payoff from the attack, V4, can represent the gain from a Bitcoin
double-spending or other type of gains (e.g. gain from a short sale of Bitcoin, gain in Bitcoin future markets

from price fluctuation caused by the attack).
Using equation (10), the incentive compatibility condition (13) can be rewritten as:

a-4
B

(14) (@RI - sE @R, = 42

1
y(ne=1) 1 1=y
n?  cet(p+d)qe

where = ang[(c;+q8)—-(1-6)q] [

Consider an attack where the only gain, V4, is double spending. The attacker acquires X amount of Bitcoins
which (s)he double spends during the attack by exchanging them for the standard fiat currency. This implies that
the gain from attack is V4 (A) = E(p,)X — AE(p.)X. After the attack, the attacker keeps the value of (double
spent) X Bitcoins in the standard fiat currency, E(p,)X, but loses partially or fully (value of) Bitcoins acquired
for the attack, AE (p,)X. If A is sufficiently small (i.e. Bitcoin does not collapse after the attack), then the system
is vulnerable to the double-spending attack. However, if A= 1 there is no gain from double-spending attack
because the double spending attacker loses exactly as much value as (s)he gains from double spending. That is,
V,4(A) = 0 and equation (14) collapses to [(y (n, — 1)/n)(E(p )R /ce + (p + 8)q)]V/ A =m, > 0. If Ais
sufficiently large, then the attack can sabotage the blockchain and lead to its complete collapse if A= 1. In this
case, the motivation of the attacker may be other than the gain (profit) from double spending (e.g. adversary
power interested to damage the Bitcoin which could include a competing centralized intermediary, a competing

cryptocurrency, or other entity) (Budish 2018).

In line with Abadi and Brunnermeier (2018); Budish (2018), equation (14) implies that the equilibrium block
reward to miners must be sufficiently large relative to the one-off gain from the attack. Given that the gain from
the attack, V,(A), is unknown (e.g. in the case of the double spending attack, X an thus V,(A) = E(p,)X —

AE (p.)X could be large for A< 1) and its value might be substantial, the equilibrium mining power needs to be

larger than the one implied by equation (11) in order to deter an attack. This is induced by the fact that the

20 Note that in the steady state situation assumed in the incentive compatibility condition (13), implies that the
discount rate p cancels out with V,(A) = V;(A) for t # L.
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payoff from the blockchain attack, V4, does not affect the economic behavior (incentives) of honest miners in

allocating their computer power for mining (i.e. V4 does not enter in equation (11)).
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