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The economic dependency of the Bitcoin security 

 

 

Abstract: 

We study to what extent the Bitcoin blockchain security permanently depends on the 

underlying distribution of cryptocurrency market outcomes. We use daily blockchain and 

Bitcoin data for 2014-2019 and employ the ARDL approach. We test three equilibrium 

hypotheses: (i) sensitivity of the Bitcoin blockchain to mining reward; (ii) security outcomes 

of the Bitcoin blockchain and the proof-of-work cost; and (iii) the speed of adjustment of the 

Bitcoin blockchain security to deviations from the equilibrium path. Our results suggest that 

the Bitcoin price and mining rewards are intrinsically linked to Bitcoin security outcomes. 

The Bitcoin blockchain security’s dependency on mining costs is geographically differenced 

– it is more significant for the global mining leader China than for other world regions. After 

input or output price shocks, the Bitcoin blockchain security reverts to its equilibrium 

security level. 

Keywords: Bitcoin, blockchain, proof-of-work, ARDL, institutional governance technology 
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Introduction 

The Bitcoin blockchain is a distributed alternative to centralized transaction-recording and 

record-keeping systems by enabling trustworthy interactions, recording transactions among 

non-trusting parties and storing records. The underlying ledger that creates and stores records 

of transactions is a digital chain of blocks, where information is recorded sequentially in data 

structures known as ‘blocks’ stored into a public database ('chain'). Being distributed, 

blockchain is run by a peer-to-peer network of nodes (computers) who collectively adhere to 

an agreed distributed validation algorithm (protocol) to ensure the validity of transactions. 

Given that a distributed network of anonymous record-keeping peers (miners) with free entry 

and exit is inherently ‘trustless’, it requires some trust-enhancing mechanism. The trust 

problem among non-trusting parties is solved by requiring miners to pay a cost (in form of 

computing power for blockchain) to record transaction information and requiring that future 

record-keepers (miners) validate those reports. Under a well-functioning institutional 

governance technology, blockchain is immutable, meaning that once data have been recorded 

on the blockchain, they cannot be altered anymore.2  

Ensuring a transaction correctness and security, enforcing property rights and contracts are 

preconditions for a functioning of markets. In traditional centralized institutional governance 

systems, typically, state or other centralized intermediary guarantees the transfers of 

ownership ensures transfers of possession and guarantees the security of property rights and 

contract enforcement. The correctness and security is incentivized via monopoly rents. A 

comparative advantage of distributed institutional governance systems such as blockchain is 

the ability to achieve and enforce a uniform view (agreement) among non-trusting parties 

with divergent interests and incentives on the state of transactions in a cost-efficient and 

 
2 For more conceptual discussion see Appendix A1 

https://en.wikipedia.org/wiki/Peer-to-peer
https://en.wikipedia.org/wiki/Protocol_(communication)
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consensus-effective way. Blockchain security algorithms make it possible for distributed 

record-keepers to confirm that the network rules are being followed, i.e. all other record-

keepers ignore any chain containing a block that does not conform to the network rules. The 

correctness and security is incentivized via physical resource costs – the proof-of-work 

(PoW) makes it costly to extend invalid chains of blocks (Davidson, De Filippi and Potts 

2016; Cong and He 2018; Derks et al. 2018).3 

In the same time, ensuring a transaction correctness and security may be more challenging for 

distributed digital ledgers than for traditional centralized ledgers (Abadi and Brunnermeier 

2018).4 First, because digital goods have two characteristics – non-rivalry and non-

excludability – which compared to traditional private goods do not prevent a double 

spending. Second, the security budget of distributed ledgers is endogenous and fluctuates 

over time (in a fiat currency nomination), implying that the underlying institutional 

governance technology may become vulnerable to attacks in a low-price and low-security-

budget equilibrium. Hence, ensuring the transaction correctness and security may become an 

issue particularly in periods of low security budget. Indeed, a number of cryptocurrency-

blockchains with a relatively small security budget of preventing attacks have experienced 

successful majority (hash rate)5 attacks in recent years, e.g. Bitcoin Gold, Ethereum Classic.6 

 
3 There are two prominent designs for validation mechanism – proof-of-work (PoW) and proof-of stake (PoS) – 
with each having different incentive scheme in achieving consensus. In this paper we focus on the PoW linked to 
Bitcoin which is the largest and most popular cryptocurrency. 

4 In the context of creating and maintaining distributed ledgers of information, a strong security implies immutable 
records of transactions, including ownership rights and smart contracts. 

5 The hash rate measures the speed at which a given mining machine operates. Usually, the hash rate is expressed 
in hashes per second (h/s). For example, a mining machine operating at a speed of 100 hashes per second makes 
100 guesses per second. Thus, the hash rate measures how much computer power a cryptocurrency network is 
deploying to continuously solve the computational problem and generate/record blocks. For example, currently 
the Bitcoin hash rate is around 110 million Tera per second where 1 Tera/s is equal to one trillion hashes per 
second. 

6 For example, Bitcoin Gold, a hard fork of Bitcoin, experienced a sequence of double-spending attacks in May 
2018. Its price measured in USD at the end of that month was 40% lower. Ethereum Classic also experienced a 
double-spend attack and several deep block reorganizations, following a 50% decline in its price and hash rate in 
January 2019. 
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Our study contributes to the literature that has studied PoW blockchain security concerns 

from a crypto-coin user perspective (see Lee 2019, for a survey). It has been found that 

crypto-coin users value security and internalize and price the risk of a blockchain attack that 

could compromise the ability to exchange crypto-coins for goods. Blockchain users who 

engage in on-chain transactions value security measured by the amount of computational 

power committed to the blockchain; ceteris paribus they prefer more computing power being 

committed to the ledger. However, there is little empirical evidence available in this literature 

about the economic dependency of the blockchain security (see Abadi and Brunnermeier 

2018; Iyidogan 2020; Pagnotta 2020, for theoretical analyses). Moreover, there is confusion 

in this literature that the blockchain security would be an embedded property of the 

underlying institutional governance’s technology. 

To close this research gap, the present study investigates the economic dependency of the 

Bitcoin blockchain security. To what extent the digital ledger’s record-keeping security 

budgets (measured by mining rewards in a fiat currency nomination) of Bitcoin is correlated 

with the cryptocurrency market outcomes? We estimate empirically the extent to which this 

relationship is contingent upon economic incentives by using daily Bitcoin data for 2014-

2019 and employ an autoregressive distributed lag approach that allows treating all the 

relevant moments of the blockchain series as potentially endogenous.  

The paper is organized as follows. The next section presents the testable hypothesis. The third 

section presents econometric approach followed by data description. The fifth section 

presents the estimation results, while the finial section concludes. 

Conceptual Framework: Testable hypotheses  

The Bitcoin blockchain mining consists of record-keepers (called miners) of a distributed 

network competing for the right to record information about new transactions (in intervals of 
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around ten minutes) to the digital ledger. Miners have to solve a computationally challenging 

problem in order to record information and validate others' reports. Solving the computational 

problem (puzzle) is energy intensive and costly. First, miners have to invest in a computer 

power, causing fixed costs. Mining involves also variable costs, such as energy (and time) for 

the computationally-intense mining process, and a building rent for the location of the mining 

equipment. On the revenue side, mining incentives are ensured via rewards for a correct and 

secure record keeping. The reward for every block is allocated to the miner that first solves 

the computational problem (hash function), by using guess and check algorithms based on the 

new and previous blocks of transactions.7  

The probability of a miner winning the block’s mining contest (i.e. the right to record a new 

block on the ledger and collect the mining reward) depends on a miner’s computer power 

devoted for each block relative to the computer power of other miners. Following the mining 

models of Thum (2018), Budish (2018) and Ciaian et al. (2021), the total equilibrium 

computer power devoted to Bitcoin mining can be expressed as:8 

(1) 𝑛𝑡𝑚𝑡 = ( 1𝑛𝑡)1+𝛾1−𝛾 [𝛾(𝑛𝑡 − 1) 𝐸(𝑝𝑡)𝑅𝑡𝑐𝑡+(𝜌+𝛿)𝑞𝑡] 11−𝛾
 

where mt is computer power per miner (e.g. expressed by the number of computer 

operations), nt is the total number of miners, 𝑛𝑡𝑚𝑡 is the total computer power devoted to the 

Bitcoin mining, E(pt) is the expected Bitcoin price, Rt is mining reward (Bitcoin quantity), ct 

is variable costs per computer operation (e.g. energy cost), 𝛿 is depreciation rate, 𝜌 is a 

discount rate for time preference, 𝛾 is a transformation parameter (with 0 < 𝛾 ≤ 0) 

determining the odds of winning a block between big and small miners, and 𝑞𝑡 is purchase 

price of one unit of a computer equipment of a given efficiency, 𝜀.  

 
7 For more conceptual discussion see Appendix A1. 
8 For derivations in Appendix A2. 
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Equation (1) implies that the total computer power devoted to the Bitcoin mining increases in 

the relative gain from mining, 𝐸(𝑝𝑡)𝑅𝑡/(𝑐𝑡 + (𝜌 + 𝛿)𝑞) and that it fluctuates with the 

Bitcoin price. Ceteris paribus, higher nominal reward or higher Bitcoin price (costs of 

mining) induces miners to invest in more (less) computing resources. The opposite is true 

when agents anticipate the value of Bitcoins to be low, miners have lower incentive to invest 

in computational resources, the competition and network hash rate decline and the security of 

the network decreases. Equation (1) implies that miners have incentives to revert to the 

equilibrium level of computer power as a response to Bitcoin price changes because 

otherwise miners would experience losses. Further, the total computer power increases at a 

decreasing rate in the level (intensity) of miners’ competition, (𝑛𝑡 − 1)/𝑛𝑡2.  

Equation (1) defines the equilibrium behavior of honest miners by pinning down how much 

computer power they would allocate to mining for a given value of reward and competition 

from other miners. The total computer power devoted to the blockchain mining, 𝑛𝑡𝑚𝑡, 

determines the security equilibrium of blockchain. The more challenging is the computational 

mining puzzle to solve, the safer and more stable is the blockchain’s institutional governance 

technology because it becomes more costly for a potentially dishonest miner to conduct an 

attack. 

A successful attack may adversely affect the perception of Bitcoin by its users reducing the 

trust and hence valuation of cryptocurrency. If the reduction of the trust is sufficiently large, 

it may cause a collapse in the economic value (price) of Bitcoin. As equation (1) implies, the 

amount of computer power for mining and hence the hash rate of the network would reduce, 

which might eventually lead to a collapse of Bitcoin blockchain. Thus, the security of Bitcoin 

blockchain is dependent on the size of mining reward received by miners which also 

determines the total computer power determined in equation (1). 

Following these analyses, we can derive three testable hypotheses: 
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• Hypothesis 1: Security outcomes of the Bitcoin blockchain. If agents anticipate the 

value of Bitcoin to be low, miners have little incentive to invest in computational 

resources, and the security of the network is low. The opposite is true when agents 

anticipate the value of Bitcoin to be high. 

Ceteris paribus, the blockchain security is sensitive (elastic) to the mining reward. 

• Hypothesis 2: The physical resource cost to write on the Bitcoin blockchain is 

intrinsically linked to the cost of preventing attacks; the security of blockchain is 

structurally linked to the ledger’s security budget and mining costs. 

Ceteris paribus, the blockchain security is sensitive (elastic) to mining costs.   

• Hypothesis 3: Ceteris paribus, the Bitcoin blockchain security adjusts quickly to 

deviations from the equilibrium.  

Estimation strategy 

Equation (1) implies that the security (measured by the allocated computer capacity) of the 

Bitcoin blockchain depends on mining rewards, the intensity of miners’ competition, mining 

costs, discount rate and the computer equipment cost-efficiency. Applying a logarithmic 

transformation to equation (1), yields the following equilibrium relationship: 

(2) 𝑦𝑡 = 𝑏0 + 𝛽𝑥𝑡 + 𝑢𝑡 

where y represents the dependent variable – the Bitcoin blockchain security (computer 

capacity devoted to mining), 𝛽 is a vector of coefficients to be estimated, x is a vector of 

explanatory covariates – mining rewards, 𝑝𝑡𝑅𝑡, the number of miners, 𝑛𝑡, the intensity of 

miners’ competition, (𝑛𝑡 − 1) 𝑛𝑡2⁄ , the cost of mining (including the discount rate), 𝑐𝑡 +(𝜌 + 𝛿)𝑞𝑡 and the commuter equipment efficiency, 𝜀𝑡, and 𝑢𝑡 is an error term. 

Equation (2) implies that the coefficients associated with the mining reward and the intensity 

of miners’ competition are expected to be positive (number of miners and mining reward 
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effects in Figure 1). In contrast, the coefficient linked to the cost of mining (energy costs and 

discount rate) is expected to be negative (mining cost effect in Figure 1). The computer 

equipment cost-efficiency coefficient is expected to have a positive relationship with the 

computer power, because everything else constant, higher computing efficiency implies that 

less energy is needed to achieve a certain computing hash rate. 

Our primary interest is the coefficient associated with the mining reward and the cost of 

mining: the former measures the elasticity of the Bitcoin blockchain security (mining network 

hash rate) with respect to the mining reward (Hypothesis 1), whereas the later with the 

mining costs (Hypothesis 2). They reflect the level of dependency of the security of the 

Bitcoin blockchain with respect to Bitcoin market outcomes.  

Estimation issues 

The estimation of the economic dependency of the blockchain security described by equation 

(2) is subject to several econometric issues. Our first concern is the endogeneity problem. The 

endogeneity issue is particularly relevant for our data series, as the security outcomes of the 

Bitcoin blockchain and the mining reward may be determined simultaneously. For example, 

if agents anticipate the value of Bitcoin to be low, miners have little incentive to invest in 

computational resources, and the security of the blockchain would be low. In that case, 

crypto-coin users may not wish to accumulate large real balances, and the resulting market 

valuation for Bitcoin would be low. The opposite would be true when agents anticipate the 

value of Bitcoin to be high. 

In order to address this endogeneity concern, we employ the Autoregressive Distributed Lag 

(ARDL) methodology that is being increasingly used for studying financial markets (e.g. 

Stoian and Iorgulescu 2020). We employ the ARDL bounds testing approach developed by 

Pesaran et al. (2001) to estimate the blockchain security equilibrium relationship (2) as it 
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enables to model the long- and short-run relationships simultaneously and has several 

advantages over the standard cointegration methods. A key advantage for our analysis is that 

the ARDL approach allows treating all the relevant moments of blockchain series as 

potentially endogenous.9 

In the context of cryptocurrencies, another important advantage of the ARDL approach is that 

it permits different numbers of lags for each data series. Contrary to other comparable 

cointegration methods, the ARDL methodology does not require testing for the order of 

integration; it can be applied irrespective of whether the regressors are purely I(0), purely I(1) 

or mutually cointegrated variables (Pesaran et al., 2001). However, Ouattara (2004) argues 

that if I(2) variables are present in the data, the computed F statistics of Pesaran et al. (2001) 

become invalid. To make sure that none of the variables is integrated of order I(2) or beyond, 

we test the stationarity of series and their first differences using the augmented Dickey–Fuller 

(ADF) test, the Dickey–Fuller GLS test (DF-GLS) and Phillips–Perron (PP) test. The 

appropriate number of lags for the series is determined by the Akaike Information Criterion. 

Accordingly, the role of the Bitcoin mining reward and the proof-of-work cost for each of the 

respective moments can be estimated after accounting for the information embedded in the 

lags of the entire distribution of blockchain security outcomes. 

Another concern is a potential errors-in-variables problem because part of the series is 

obtained from primary non-harmonized data sources and it is difficult to judge how reliable 

these series are. In particular, this concerns those series that are not recorded on blockchain, 

such as, mining cost data. Indeed, the time series measuring variable mining unit costs in 

different world regions are collected by using different sampling methodologies and different 

weights. Some of these issues can be overcome by first differencing the data. Nevertheless, 

 
9 As noted by Pesaran and Shin (1999, p. 16), the use of ARDL is well suitable to address the endogeneity problem: 
‘‘appropriate modification of the orders of the ARDL model is sufficient to simultaneously correct for residual 

serial correlation and the problem of endogenous regressors’’. 
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part of potential errors-in-variables issues remain. To address the remaining potential errors-

in-variables issues, we construct alternative proxies for measuring the dependent variable – 

blockchain security – and key explanatory variables – mining competition – and estimate 

these otherwise identical mining models for robustness. 

Econometric strategy 

The ARDL bounds testing procedure is applied to test the existence of a long-run 

relationship. The general form of an ARDL(g, z,…..,z) model is standard and follows the 

literature: 

(3) 𝑦𝑡 = 𝑏0 + ∑ 𝜙𝑦𝑡−1 + ∑ 𝛽𝑖𝑥𝑡−1 + 𝑢𝑡𝑧𝑖=0𝑔𝑖=1  

where y represents the dependent variable – security (computer power) of mining, x is a 

vector of independent variables – mining rewards, intensity of miners’ competition, energy 

costs, discount rate and the commuter equipment efficiency, g is the number of optimal lags 

of the dependent variable and z represent the number of optimal lags of each explanatory 

variable.  

Pesaran et al. (2001) has proposed two types of critical values for a given significance level. 

The first type assumes that all variables in the model are I(1), whereas the other assuming 

that all series are I(0). If the computed F statistic is below the lower bound, the null 

hypothesis of no long-run relationship fails to be rejected. In such case, an ARDL model in 

first differences without an error correction term should be estimated. If the F-statistic lies 

between the two bounds, the result is inconclusive. If the computed F-statistic exceeds the 

upper bound, the null hypothesis of no cointegration is rejected. In this case, the error 

correction model to be estimated is: 

(4) ∆𝑦𝑡 = 𝑏0 − 𝛼(𝑦𝑡−1 − 𝜃𝑥𝑡) + ∑ 𝜓𝑦𝑖∆𝑦𝑡−𝑖 +𝑔−1𝑖=1 ∑ 𝜓𝑥𝑖∆𝑥𝑡−𝑖 + 𝑢𝑡𝑧−1𝑖=0  
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where θ represent the long-run coefficients, ψ are short-run multipliers and α shows the speed 

of adjustment of the dependent variable to a short-term shock. It measures how quickly the 

blockchain security adjusts to deviations from the equilibrium (Hypothesis 3). 

Following the standard procedure in the literature (Pesaran et al. 2001), we apply a set of 

diagnostic tests, as the validity of ARDL results is based on the assumption of normally 

distributed error terms, no serial correlation, heteroscedasticity and stability of the 

coefficients. The empirically estimable specification of the models and the number of lags is 

determined in accordance with the results of diagnostic tests, including Breusch-Godfrey LM 

test and Durbin’s alternative test for autocorrelation, Breusch-Pagan/Cook-Weisberg test for 

heteroscedasticity, normality testing and cumulative sum test for the parameter stability. 

Data 

In empirical estimations, we use daily data for the period 27/12/2014 – 4/9/2019. The details 

of data series used in estimations and their sources are reported in Table 1. All time-series are 

transformed in a log-form in the estimations, implying that the estimated coefficients can be 

interpreted as elasticities. Table 2 provides a descriptive statistic of the data used.  

Our main dependent variable measuring the computer power devoted for mining is hash rate 

and is represented in average daily hashes per second.10 For robustness, we also consider the 

mining difficulty as an alternative dependent variable which measures the effort required to 

mine a new block for the blockchain. 

Following equation (2), our independent variables include the number of miners and the 

derived competition intensity, (𝑛𝑡 − 1) 𝑛𝑡2⁄ . We also consider alternative proxies for 

competition intensity – Herfindahl-Hirschman index (hhi) and normalized Herfindahl-

 
10 Hash rate measures the speed at which mining machines operates. Usually, the hash rate is expressed in hashes 
per second (h/s). For example, a mining machine operating at a speed of 100 hashes per second makes 100 guesses 
per second.10 Thus, the hash rate measures how much computer power the Bitcoin network is deploying to 
continuously solve the computational problem and generate/record blocks. 
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Hirschman index (hhi normalised) – in order to account for unequal distribution of computer 

power between different miners. The variable mining reward is measured as the average daily 

value of the reward per block calculated by dividing the total mining reward per day (in US 

dollars) by the total number of blocks per day11. To measure a region-specific cost of mining, 

we use electricity prices in Europe (electricity Europe), China (electricity China) and North 

America (electricity N. America). We proxy discount rate with the US 10-year treasury 

constant maturity rate (10-year-treasury). Finally, the mining equipment efficiency is proxied 

with the most efficient mining hardware available in each time period measured by the 

energy efficiency of the hardware (Zadé and Myklebost 2018; CBEI 2019; Delgado-Mohatar, 

Felis-Rota and Fernández-Herraiz 2019). All variables are used in a log-form in the 

estimations, implying that the estimated coefficients can be interpreted as elasticities.  

Results 

We start with checking the stationarity properties of our time series, as the ARDL procedure 

requires all variables to be either I(0) or I(1). The results of the Augmented Dickey-Fuller 

test, the Dickey–Fuller GLS test (DF-GLS) and the Phillips–Perron (PP) test indicate that 

there is no variable integrated of the second order and thus we can apply the ARDL approach. 

Table 3 summarizes the three estimated mining models with different specification of 

explanatory variables and for each of the three models we include two sub-models with 

alternative measures of the Bitcoin blockchain security, i.e. hash rate and difficulty. The three 

estimated mining models differ by the proxy measuring the computer intensity. Model 1 uses 

competition intensity variable, (𝑛𝑡 − 1) 𝑛𝑡2⁄ , as derived in equation (1), whereas models 2 and 

3 use the two alternative proxies for competition intensity: the Herfindahl-Hirschman index 

 
11 Mining reward contains the total value of coinbase block rewards and transaction fees paid to miners. 
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(hhi) and normalized Herfindahl-Hirschman index (hhi normalised), respectively. The rest of 

variables are the same across all estimated mining models. 

Long-run economic dependency of the Bitcoin security  

Mining rewards. In line with theoretical expectations, the ARDL estimation results confirm a 

long-run structural relationship between the mining reward and security outcomes of the 

Bitcoin blockchain (Table 4). This holds for both variables measuring the computer power 

devoted to mining, hash rate and difficulty, and across all estimated models. The estimated 

elasticities corresponding to the mining reward variable are in the range between 1.4 and 2.0, 

suggesting an elastic response in the mining computer capacity to permanent changes in the 

mining reward. That is, a 1% permanent increase in the mining reward increases the 

underlying blockchain security by 1.4% to 2.0% in the long-run. Hence, our estimates fail to 

reject Hypothesis 1: the Bitcoin security is overly sensitive (elastic) to Bitcoin mining reward. 

A change in the payoff from mining causes a more than proportionate change in the Bitcoin 

security.  

Given that usually mining costs are incurred in standard fiat currencies (e.g. US dollar, Euro), 

the value of the mining reward fluctuates with the price of Bitcoin12 which in turn affects 

mining reward and mining incentives. Thus, if the expected Bitcoin price decreases, lower 

mining incentives reduce the equilibrium computer mining capacity and hence the Bitcoin 

security. The reverse is valid in the case of a positive Bitcoin price shock.  

Proof-of-work costs. As regards the variable mining unit costs and security outcomes of 

blockchain, the results are more nuanced. As explained above, to measure a region-specific 

the cost of mining, for the variable construction we have used separate electricity prices for 

 
12 Note that the change in Bitcoin price is the main factor deriving the change in the value of mining reward 
because according to the algorithm the quantity of mining reward in Bitcoins, Rt, changes (halves) only 
approximately every 4 years, whereas Bitcoin price changes daily. 
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Europe, China and the North America. The estimation results for the world global mining 

leader China13 – 65% of the global Bitcoin hash rate are concentrated in China – imply a 

statistically significant and positive relationship between the security of the underlying 

blockchain and the proof-of-work cost (models M2.1 to M3.2). The estimated variable 

mining unit costs coefficients the North America are statistically significant and negative in 

models M1.1, M2.1. and M3.1. For Europe, the mining cost coefficients are statistically 

insignificant. One explanation for these mixed results could be that the intensive margin of 

mining is larger in China, where all major mining pools are located. A declining number of 

miners might actually not reduce the mining network hash rate, if those individual miners 

join the rapidly growing miner pools. Parra-Moyano, Reich and Schmedders (2019) find an 

empirical evidence for learning by mining, which results in a decreasing extensive margin of 

mining and an increasing intensive margin of mining. Second, our estimates capture other 

long-term behavioral effects of miners induced by a permanent change in electricity prices 

such as shifting mining location to places with cheaper energy (e.g. to remote regions of 

China, from mainland Europe to Iceland to harvest geothermal power).14 Such long-term 

behavioral effects may actually increase computer power, if the energy savings more than 

offset the price increase. Finally, these results may also reflect the fact that the mining input 

cost data (which are location-specific) are considerably less reliable than the mining reward 

data, which are publicly available for every single historical Bitcoin transaction. 

Based on these ARDL bounds testing results, we cannot provide a robust answer regarding 

Hypothesis 2. Instead, these results call for further analysis using more disaggregated 

location-specific mining cost data, given that the effect of electricity prices in North America 

 
13 https://news.bitcoin.com/65-of-global-bitcoin-hashrate-concentrated-in-china/  

14 https://www.vox.com/2019/6/18/18642645/bitcoin-energy-price-renewable-china 

https://news.bitcoin.com/65-of-global-bitcoin-hashrate-concentrated-in-china/
https://www.vox.com/2019/6/18/18642645/bitcoin-energy-price-renewable-china
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is in line with expectations as derived in equation (1), whereas the opposite relationship is 

found for the electricity prices in China. 

Competition and network externalities. The variables measuring the miners’ competition 

level have a negative impact on security outcomes of the Bitcoin blockchain; all estimated 

coefficients are statistically significant. These results suggest that a permanent increase in the 

competition intensity exercises a downward pressure on the mining computer power in the 

long-run. As discussed in Appendix A.1.2, digital distributed ledgers such as blockchain are 

subject to a number of network externalities. When new miners enter the mining of 

blockchains, two types of direct network externalities related to the blockchain security arise, 

one positive and one negative. The positive network externality implies that the blockchain 

security is increasing with the number of miners, because each additional node reinforces the 

chain’s security. In line with the previous literature (Waelbroeck, 2018), the negative network 

externality occurs because each individual miner invests in the mining-computing power, 

which increases both the individual miner’s marginal income though also mining costs, as the 

difficulty of the computational problem increases in the number of miners and their 

computing power (“hash-power”). Increasing the difficulty of mining reduces the incentives 

for mining and – in the presence of learning by mining – increases the concentration of 

mining activities, reducing in such a way the blockchain security. Our estimates suggest that 

the negative network externality dominates of the positive network externality. Our results 

are in line with those of Parra-Moyano, Reich and Schmedders (2019) who find that the 

probability of winning a mining contest increases with the miner size. This motives miners to 

join mining pools to increase their probability to win the mining contest and receive reward.15 

Indeed, our competition proxy variables are constructed based on the observed number of 

 
15 Other benefit of joining mining pools is that it creates a steady stream of income, rather than greater income but 
at lower frequency (i.e. due to lower odd of winning the mining contest) with individual mining (Liu and Wang 
2017). 
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miners but not on the number of members within mining pools. And since a greater 

competition may imply fewer miners (because many individual miners join mining pools), 

the implied actual long-run relationship between the competition intensity and mining power 

becomes negative. 

Hardware efficiency. In line with the theoretical model, the hardware efficiency variable has 

a statistically significant negative impact on the mining computer power in models M1.1, 

M1.2 and M3.1. The estimation results imply that an increase in the efficiency of mining 

equipment (decrease in the input units of the mining hardware efficiency per security output 

unit) leads to an increase of security outcomes of the Bitcoin blockchain in the long-run. The 

estimated elasticities vary between -0.6 and -0.8, implying that a 1% permanent increase in 

the efficiency of mining equipment increases the mining computer power in the long-run by 

between 0.6% and 0.8%. Hence, the Bitcoin blockchain mining security is dependent of the 

mining technology available at a given point of time.  

Time preference. The 10-year-treasury variable, which is a proxy for the discount rate, has a 

statistically significant positive impact on the mining computer power. This result could be 

explained by the fact that the 10-year-treasury actually captures a miner investment 

competition effect (i.e. an alternative financial asset return). As far as Bitcoin is perceived as 

an investment asset, shocks to competing financial asset returns (including 10-year-treasury) 

are expected to impact positively miners’ choices to invest in the mining of Bitcoin. Our 

results confirm that Bitcoin is perceived by miners to be competing for investment with other 

financial assets and thus need to deliver a competitive return. The return arbitrage among 

alternative investment opportunities implies a positive price relationship between Bitcoin and 

alternative financial assets (Murphy 2011; Ciaian, Rajcaniova and Kancs 2018). Thus, the 

positive coefficient estimated for the 10-year-treasury variable implies that miners are 
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motivated to invest in more computer power for mining when the returns to financial assets 

increase.  

The estimates of the error correction term – which measures the speed of adjustment of the 

short-run dynamics of mining to the long-run equilibrium path – are statistically significant 

across all models. The error correction terms vary between -0.002 and -0.009. This means 

that between 0.2% and 0.9% of the long-run disequilibrium in mining power is corrected by 

the short-run adjustment the same day. Or the disequilibrium corrects at a speed of 

convergence of between 0.2% and 0.9% per day. In terms of the duration, any deviation from 

the long-run equilibrium is corrected in around 111 to 453 days (or in 0.30 to 1.24 years). 

These results provide support for Hypothesis 3 that security outcomes of the Bitcoin 

blockchain adjust to deviations from the long-run security equilibrium. 

Short-run economic dependency of the Bitcoin security  

Generally, short-run results are less significant across the estimated ARDL models than long-

run results (Table 5). Contrary to our expectations, there is some support that the mining 

reward affects negatively the mining computer power in the short-run. However, the 

estimated elasticity is rather small. A 1% positive shock in the Bitcoin mining reward (the 

third lag) decreases the mining computer power in the short-run by between 0.014% and 

0.020%. This negative relationship between the mining reward and mining power could be a 

result of other effects such as switching mining to other cryptocurrencies (e.g. to Bitcoin 

cash) when the relative price of Bitcoin to cryptocurrencies decreases.16 These findings also 

 
16 There is some evidence of asymmetric change in Bitcoin and altcoin prices: shocks to altcoins prices tend to be 
greater than Bitcoin price shocks (Reiff 2018; Cheikh, Zaied and Chevallier 2020). This implies that the relative 
prices of Bitcoin to altcoins are inversely related with the Bitcoin price changes which may incentivize miners to 
shift some Bitcoin computer power to mining altcoins when Bitcoin price increase, and shift back the computer 
power to Bitcoin mining when Bitcoin price declines. Note that the shift in mining between different cryptos is 
less relevant for ASIC mining hardware, commonly used for Bitcoin mining, which is more efficient in mining 
specific cryptocurrencies (specific cryptographic hash algorithm) and cannot be used for mining other types of 
cryptocurrencies. 
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tend to support the Hypothesis 1: although an inverse relationship is found, the security 

outcomes of the Bitcoin blockchain shows sensitivity to Bitcoin mining reward even in the 

short-run. This short-run inverse relationship could be caused by secondary spiral effects 

induced by Bitcoin price changes – decrease (increase) – as suggested by Kroll, Davey and 

Felten (2013), through the subsequent loss (gain) of confidence (thrust) in Bitcoin when 

Bitcoin mining power decreases (increases) which might further reduce (increase) the Bitcoin 

price. 

As expected, the variables measuring mining competition level (number of miners, 

competition intensity) have a statistically positive impact on the computer power in models 

M1.1, M1.2, M.2.2 and M3.2. These results suggest that in the short-run, the competition 

among miners stimulates deployment of more mining equipment in line with the model 

derived in equation (1). These results are in contrast to the long-run estimates. While in the 

short-run the miners’ competition leads to expansion of the Bitcoin mining power, in the 

long-run the inverse relationship is valid indirectly suggesting reduced competition level as 

individual miners have the incentive to join mining pools.  

In line with the theoretical expectation in equation (1) the electricity prices in China have 

statistically negative impact on the computer power outcomes of the Bitcoin blockchain in 

the short-run in models M1.1, M2.1 and M3.1. The reverse relationship was estimated in the 

long-run, where permanent increase in the electricity prices in China led to an increase in the 

mining power suggesting that other structural changes in miners’ behavior might take place 

when the cost changes are permanent. The estimated variable mining electricity costs for 

North America and Europe are statistically insignificant in the short-run. These findings 

 
16 https://www.vox.com/2019/6/18/18642645/bitcoin-energy-price-renewable-china 

https://www.vox.com/2019/6/18/18642645/bitcoin-energy-price-renewable-china
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support the Hypothesis 2 that the security outcomes of the Bitcoin blockchain is sensitive to 

mining costs. 

The lagged dependent variables (hash rate and difficulty) are statistically significant across all 

models. Their coefficients vary between -0.04 and -0.46. The relatively high values of these 

coefficients indicate that the short-run shocks in the mining computer power disappear over 

time relatively fast: in around 2.2 to 28.6 days. These results support the Hypothesis 3 that 

the security outcomes of the Bitcoin  is sensitive to Bitcoin market outcomes in the short-run 

to fluctuations with instant shocks disappearing over a short time period (within few days). 

The short-run effects of electricity prices, hardware efficiency, 10-year-treasury and 

alternative proxies for competition intensity cannot be examined due to the ARDL 

specifications, as no lags of these dependent variables entered the model.  

Discussion and concluding remarks 

Alongside being a new innovative information and computation technology, blockchain also 

introduces a new institutional governance technology that makes possible the enforcement of 

contracts, ownership rights and development of distributed autonomous organizations. 

Bitcoin blockchain offers an example where the institutional governance system (i.e. the 

security of the enforcement of property rights and contracts) is endogenously determined by 

its underlying transaction validation algorithm. This is in a sharp contrast to the traditional 

centralized institutional governance systems which face many impediments to bring about 

dynamic institutional changes. While an institutional innovation (creation of institutions) is 

desirable, the institutional deterioration (destruction of institutions) is not. Sustaining 

economic transactions built on the Bitcoin blockchain requires to have in place a correct and 

secure system of verification and enforcement of property rights and contracts. As a result, 

the security and correctness of the verification and enforcement system should portray a 
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certain neutrality from the fluctuation of economic market outcomes executed on the Bitcoin 

blockchain in order to reduce a potential risk of adverse attacks and a subsequent loss of trust 

among blockchain users. 

The present paper studies the economic dependency of the Bitcoin security of the 

enforcement quality on the underlying economic incentives defined within its validation 

algorithm. We apply time-series analytical mechanisms using data for the period 27/12/2014 

– 4/9/2019 to estimate the responsiveness of Bitcoin security to the economic incentives both 

in the short- and long-run in order to provide empirical understanding for three tested 

hypothesis: the Bitcoin security is dependent on the mining reward (Hypothesis 1), security 

outcomes of the Bitcoin and the proof-of-work cost (Hypothesis 2) and any disequilibria in 

Bitcoin security revert back to its equilibrium relatively fast (Hypothesis 3). We employ an 

autoregressive distributed lag approach that allows treating all the relevant moments of the 

blockchain series as potentially endogenous.  

Our results suggest that the Bitcoin price and mining rewards are intrinsically linked to 

blockchain security outcomes. Results for mining costs are geographically differenced – they 

are more significant for the global mining leader China than for other world regions. The 

estimates for the speed of adjustment of the Bitcoin security suggest that any disequilibria 

revert back to its equilibrium relatively fast. Based on the ARDL bounds testing results, we 

fail to reject Hypothesis 1 and 3, suggesting that Bitcoin security is highly responsive to 

permanent shocks in mining reward and its adjustment to the permanent and short-term 

shocks is relatively fast. In the long-run, we find an elastic (between 1.4 and 2.0) and positive 

response in Bitcoin mining computer power to permanent change in mining reward, while in 

the short-run, the elasticity is smaller and the relationship is negative (between -0.014% and -

0.020%) (Hypothesis 1). Further, any deviation in Bitcoin mining computer power from the 

long-run equilibrium is corrected in around 0.30 to 1.24 years, whereas the short-run shocks 
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disappear in around 2.2 to 28.6 days (Hypothesis 3). Regarding the Hypothesis 2, we find 

some support that the mining costs (i.e. electricity prices) impact the Bitcoin mining power 

and thus its security but the results are not robust across estimated models and the sign of 

estimated effects is not always consistent with theoretical expectations. This could be 

explained by the fact that the permanent shocks occurring to the electricity prices might have 

been accommodated by miners through other behavioral changes (e.g. relocation of mining to 

locations with less expensive electricity). Further, our estimates show that the Bitcoin 

security is dependent on the competition intensity among miners and the efficiency of the 

mining technology. The competition intensity among miners leads to shot-run increase in 

mining computer power, whereas the reverse is valid in the long-run likely due to the 

structural changes taking place in mining whereby individual mining is replaced in favor of 

concentration of computer power to a relatively small number of mining pools. As regards 

the mining technology, its improvement is found to stimulate the expansion in mining 

computer power and thus can undermine the Bitcoin security in future if, e.g., a strong 

innovation would take place in the computing technology (e.g. Quantum Computers). 

The findings of this paper challenge the entire Bitcoin security model. Our results suggest 

that the Bitcoin blockchain security is highly sensitive to the reward system which 

incentivizes distributed network participants to provide validation and enforcement services 

by making available their computer capacity. As the ARDL estimates show, these services 

are highly responsive and adjust fast to the internal Bitcoin economics (i.e. to changes in the 

mining reward). This may pose problems particularly in low-security equilibriums when the 

mining reward value declines. In such a situation, the incentives for supplying security 

services descrease and may make the transactions executed on Bitcoin blockchain vulnerable 

to potential attacks. The Bitcoin security is sustainable only if the value of reward increases 

over time particularly given that by design of the Bitcoin algorithm, the reward is halved 
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approximately every 4 years (every 210,000 blocks). This is reinforced by the fact that the 

innovations in the computing technology may significantly reduce the cost of supplying 

computer power and thus might also undermine Bitcoin strength against potential hostile 

attacks.  Hence, in the medium-run, the entire security concept of the Bitcoin may need to be 

redesigned in order to reduce as much as possible its vulnerability to proof-of-work costs and 

cryptocurrency market outcomes. Otherwise, the Bitcoin blockchain might fail to generate a 

sufficient trust to provide incentives that would attract economic agents to develop activities 

on the distributed ledger and thus to stimulate the growth of the distributed digital economy.   
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Table 1. Data sources 

Variable Unit Name of variable  Source Description 

Dependent variables     
hash rate Hash/second Total computer power bitinfocharts.com  
difficulty Average difficulty 

per day 
Mining difficulty bitinfocharts.com  

Explanatory variables     
number of miners No Number of miners, 𝑛𝑡 blockchair.com Number of miners, total 
competition intensity Index Competition intensity Calculated: (𝑛𝑡 − 1) 𝑛𝑡2⁄  Calculated based on 

n_miners_t 

(n_miners_t – 1)/ 
(n_miners_t*n_miners_t) 

hhi Index Herfindahl-Hirschman 
index 

Calculated based on 𝑛𝑡 and 
hashrate 

 

hhi normalised Index Normalised Herfindahl-
Hirschman index 

Calculated based on on 𝑛𝑡 
and hashrate 

 

mining reward USD per block Mining reward per 
block 

blockchair.com Total mining reward per day 
(in USD) divided by the total 
number of blocks per day 
reward_usd/ no_bl_total 

electricity Europe EUR/MWh European Electricity 
Index 

www.epexspot.com  

electricity China USD/kWh Chengdu's Usage Price 
Electricity for Industry, 
USD 

www.ceicdata.com   

electricity N. America CAD/MWh Electricity price in 
North America 

reports.ieso.ca  

10-year-treasury % 10-Year Treasury 
Constant Maturity Rate 
(DGS10) 

fred.stlouisfed.org 10-Year Treasury Constant 
Maturity Rate (DGS10) 

hardware efficiency J/Giga hash Mining equipment 
efficiency 

Constructed based on: Zadé 
and Myklebost (2018), 
CBEI (2019) and Delgado-
Mohatar, Felis-Rota and 
Fernández-Herraiz (2019) 

Bitcoin mining hardware 
generation (most efficient 
device in each time period), 
J/Giga hash 

 

Table 2. Descriptive statistics of used data 

Variable Obs Mean Std. Dev. Min Max       
hashrate 3,174 38.313 5.995 25.442 45.905 
difficulty 3,174 22.456 6.020 9.581 30.008 
number of miners 3,174 2.691 0.881 0.000 3.526 
competition intensity 3,174 -3.144 1.018 -6.908 -1.386 
hhi 3,174 -1.638 0.720 -2.608 0.000       
hhi normalised 3,174 -1.958 0.860 -3.176 0.000 
mining_reward 3,174 8.732 2.252 -0.692 12.794 
electricity Europe 3,174 3.505 0.876 -6.908 4.891 
electricity China 3,174 -2.179 0.063 -2.402 -2.113 
electricity N. America 3,174 2.554 1.944 -6.908 5.617       
10-year-treasury 3,174 0.827 0.208 0.315 1.322 
hardware efficiency 3,174 0.151 2.943 -3.219 6.240 
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Table 3. Specification of the estimated models 

 M1.1 M1.2 M2.1 M2.2 M3.1 M3.2 

hashrate X  X  X  

difficulty  X  X  X 

       

Explanatory variables       

number of miners X X X X X X 

competition intensity X X     

hhi   X X   

hhi normalised     X X 

mining reward X X X X X X 

electricity Europe X X X X X X 

electricity China X X X X X X 

electricity N. America X X X X X X 

10-year-treasury X X X X X X 

hardware efficiency X X X X X X 

 

Table 4. Estimation results: long-run impacts 

 M1.1   M1.2   M2.1   M2.2   M3.1   M3.2   

number of miners -0.154  -0.108  -2.911 *** -3.910 *** -2.415 *** -3.462 *** 

competition intensity -1.203 *** -1.197 ***         

hhi     -3.707 ** -5.996 ***     

hhi normalised         -2.285 ** -4.376 *** 

mining reward 1.398 *** 1.670 *** 1.373 *** 1.988 *** 1.379 *** 1.988 *** 

electricity Europe -0.234  0.136  -0.338  0.161  -0.337  0.185  

electricity China 3.643  4.415  11.095 ** 12.605 ** 13.874 ** 19.150 *** 

electricity N. America -0.135 * -0.060  -0.218 ** -0.118  -0.235 ** -0.145  

10-year-treasury 2.204 ** 2.691 *** 5.125 *** 5.457 *** 5.763 *** 7.081 *** 

Hardware efficiency -0.799 *** -0.588 *** -0.563  0.138  -0.663 * 0.080  

                          

Error correction term             

hash rate (-1) -0.009 ***   -0.007 ***   -0.007 ***   

difficulty (-1)   -0.003 ***   -0.002 ***   -0.002 *** 

Speed-of-adjustment (days) 111  333  147  407  151  453  

Dependent variables are hash rate (M1.1, M2.1, M3.1) or difficulty (M1.2, M2.2, M3.2); Speed-of-adjustment is calculated 

based on error correction rate. 

***significant at 1% level, **significant at 5% level, *significant at 10% level. Empty cell indicates absence of a variable in 

the respective model. 
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Table 5. Estimation results: short-run impacts 

 M1.1   M1.2   M2.1   M2.2   M3.1   M3.2   

Δ hash rate (-1) -0.440 ***   -0.428 ***   -0.429 ***     

Δ hash rate (-2) -0.455 ***   -0.443 ***   -0.444 ***     

Δ hash rate (-3) -0.320 ***   -0.305 ***   -0.306 ***     

Δ hash rate (-4) -0.221 ***   -0.206 ***   -0.205 ***   

Δ hash rate (-5) -0.166 ***   -0.151 ***   -0.150 ***   

Δ hash rate (-6) -0.104 ***   -0.091 ***   -0.090 ***   

Δ hash rate (-7) -0.075 ***   -0.064 ***   -0.066 ***   

Δ difficulty (-1)     0.200 *** 
  

0.212 *** 
  

0.213 *** 

Δ difficulty (-2)     -0.142 *** 
  

-0.142 *** 
  

-0.142 *** 

Δ difficulty (-3)   -0.040 **   -0.036 **   -0.035 * 

Δ difficulty (-4)   -0.073 ***   -0.072 ***   -0.071 *** 

Δ difficulty (-5)   -0.056 ***   -0.055 ***   -0.054 *** 

Δ difficulty (-6)   -0.052 ***   -0.049 ***   -0.049 *** 

Δ difficulty (-7)   -0.059 ***   -0.055 ***   -0.054 *** 

Δ number of miners             -0.002    -0.003  

Δ number of miners (-1)             0.075 ***   0.074 *** 

Δ number of miners (-2)             0.091 ***   0.090 *** 

Δ competition intensity 0.010  -0.001                  

Δ competition intensity (-1) 0.066 *** 0.032 ***                 

Δ competition intensity (-2) 0.040 *** 0.033 ***                 

Δ mining reward -0.019 *** -0.001  -0.017 ** 0.000  -0.017 ** 0.000  

Δ mining reward (-1) -0.020 *** -0.003    -0.002  -0.016 ** -0.002  

Δ mining reward (-2)   0.000    0.001    0.001  

Δ mining reward (-3)   -0.014 ***   -0.014 ***   -0.014 *** 

Δ mining reward (-4)   -0.015 ***   -0.015 ***   -0.015 *** 

Δ electricity China -1.246 **   -1.256 **   -1.243 **   

constant 0.289 *** 0.046 * 0.357 *** 0.078 *** 0.387 *** 0.099 *** 

Dependent variables are hash rate (M1.1, M2.1, M3.1) or difficulty (M1.2, M2.2, M3.2); 

***significant at 1% level, **significant at 5% level, *significant at 10% level. Empty cell indicates either absence of a 

variable in the respective model or the coefficient or the variable is not selected in the estimation; Δ is difference. 
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Figure 1. Interdependency between Bitcoin price, mining costs and mining security  

  

Source: Conceptual framework (section 2 and Appendix. A.1 Model of the Bitcoin mining). 

 

Figure 2. Dynamics of the Bitcoin price, mining reward, hash rate and network difficulty 

 

Source: Based on data from blockchain.com/data/. 
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Appendix. A.1 Model of the Bitcoin mining 

In this Appendix we show a theoretical model to determine equilibrium relationships between Bitcoin 

blockchain security, market outcomes and resources devoted to the blockchain mining. Building on the mining 

models of Thum (2018), Budish (2018) and Schilling and Uhlig (2019), we model a rational miner i that decides 

on the quantity of computer power, mit (e.g. expressed by the number of computer operations), to devote for 

mining each Bitcoin block t (represented in block time measured in 10 minute interval which is the average time 

needed to mine a block in blockchain). The mining output is measured in capacity of blockchain security units. 

The probability of miner i winning the contest (i.e. the right to generate a new block and collect reward) depends 

on his/her computer power devoted for each block relative to the computer power of other miners. Previous 

studies assume that the probability of winning the contest and validating a block is independent of the miner 

size: 𝑚𝑖𝑡/(𝑚𝑖𝑡+∑ 𝑚𝑗𝑡𝑛𝑡𝑗≠𝑖 ), where nt is the total number of miners and ∑ 𝑚𝑗𝑡𝑛𝑡𝑗≠𝑖  is the total computer power of other 

miners devoted to the block t (e.g. Cocco and Marchesi 2016; Thum 2018; Schilling and Uhlig 2019). However, 

Parra-Moyano, Reich and Schmedders (2019) show that the probability of relatively bigger miners winning the 

mining contest is higher than that of relatively smaller miners because there is a “learning" effect when mining a 

particular block with larger mining computers learning faster than smaller mining computers. To account for the 

learning by mining, we assume the following transformation of the probability for a miner winning a block: 

𝑒𝑚𝑖𝑡𝛾 /(𝑒𝑚𝑖𝑡𝛾 +∑ 𝑒𝑚𝑗𝑡𝛾𝑛𝑡𝑗≠𝑖 ), where 𝛾 is a transformation parameter (with 0 < 𝛾 ≤ 0), which implies that the ratio of 

odds between big and small miners (mining computers) of winning a block increases with the miners’ size, mit, 

while keeping the ratio of miner’ size between miners fixed. 

The purchase price of one unit of a computer equipment of a given efficiency, 𝜀, is denoted by 𝑞𝑡. The 

successful miner receives reward ptRt, where Rt is Bitcoin quantity and pt is Bitcoin price per one unit expressed 

in monetary values (e.g. US dollar). Miner i chooses computer power, mit, for a given computer efficiency, 𝜀, so 

that to maximize the present discounted value of the flow of profits over the infinite time horizon: 

(5) 𝜋𝑖 = ∑ ( 11+𝜌)𝑡 ( 𝑒𝑚𝑖𝑡𝛾
𝑒𝑚𝑖𝑡𝛾 +∑ 𝑒𝑚𝑗𝑡𝛾𝑛𝑡𝑗≠𝑖 𝐸(𝑝𝑡)𝑅𝑡 − 𝑐𝑡𝑚𝑖𝑡 − 𝑞𝑡𝐼𝑖𝑡) − 𝐹𝑡  

Subject to 𝑚𝑖𝑡+1 units of computer power: 

(6) 𝑚𝑖𝑡+1 = (1 − 𝛿)𝑚𝑖𝑡 + 𝐼𝑖𝑡 
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where ct is variable costs per computer operation (e.g. energy cost), E(pt) is the expected Bitcoin price, 𝛿 is 

depreciation rate, 𝐼𝑖𝑡 is investment in computer equipment, F are one-time fixed costs (e.g. building), and 𝜌 is a 

discount rate for time preference. Deviations from the expected price are random shocks, ν, with an expected 

value of zero: E(pt) = pt
*, where pt = pt

* + ν. We assume a rational price expectation framework of Muth (1961) 

in which miners base their Bitcoin price formation on all the available information at the time when making 

their decisions on the investment in mi. Miners are identical, risk-neutral, non-cooperative and profit-driven 

agents that invest according to the anticipated real value of block rewards. 

Maximizing miner i’s profits for the given computer power of all other miners yields the following optimal 

conditions: 

(7) −𝑞𝑡 + 11+𝜌 𝜆𝑡+1 = 0 

(8) 
𝛾𝑚𝑖𝑡𝛾−1𝑒𝑚𝑖𝑡𝛾 ∑ 𝑒𝑚𝑗𝑡𝛾𝑛𝑡𝑗≠𝑖(𝑒𝑚𝑖𝑡𝛾 +∑ 𝑒𝑚𝑗𝑡𝛾𝑛𝑡𝑗≠𝑖 )2 𝐸(𝑝𝑡)𝑅𝑡 − 𝑐𝑡 + 11+𝜌 (1 − 𝛿)𝜆𝑡+1 = 𝜆𝑡 

(9) 𝑚𝑖𝑡+1 = (1 − 𝛿)𝑚𝑖𝑡 + 𝐼𝑖𝑡 

where 𝜆𝑡 is a shadow price for a unit computer power. 

Assuming a steady state equilibrium with 𝑚𝑖𝑡 = 𝑚𝑖𝑙,  𝑅𝑡 = 𝑅𝑙, 𝐸(𝑝𝑡) = 𝐸(𝑝𝑙), 𝑞𝑡 = 𝑞𝑙, and  𝑛𝑡 = 𝑛𝑙 for 𝑡 ≠ 𝑙 
and a symmetric equilibrium with mit = mjl, the equilibrium computer power per miner can be derived from 

equations (7) to (9) as follows: 

(10) 𝑚𝑡 = [𝛾(𝑛𝑡−1)𝑛𝑡2 𝐸(𝑝𝑡)𝑅𝑡𝑐𝑡+(𝜌+𝛿)𝑞𝑡] 11−𝛾
 

Rewriting equation (10) in terms of the total computer power devoted to mining, 𝑛𝑡𝑚𝑡∗, yields the mining 

equilibrium: 

(11) 𝑛𝑡𝑚𝑡 = ( 1𝑛𝑡)1+𝛾1−𝛾 [𝛾(𝑛𝑡 − 1) 𝐸(𝑝𝑡)𝑅𝑡𝑐𝑡+(𝜌+𝛿)𝑞𝑡] 11−𝛾
 

Equation (11) implies that the total computer power increases in the relative gain from mining, 𝐸(𝑝𝑡)𝑅𝑡/(𝑐𝑡 + (𝜌 + 𝛿)𝑞). The mining equilibrium implies that the computer power devoted to mining 

fluctuates with the Bitcoin price. This model feature reflects the intuition that, ceteris paribus, higher nominal 

reward or higher Bitcoin price induces miners to invest in more computing resources. The opposite is true when 
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agents anticipate the value of Bitcoins to be low, miners have little incentive to invest in computational 

resources, and the security of the network is low.  

Second, the mining equilibrium (11)  implies that the total computer power increases at a decreasing rate in the 

level (intensity) of competition, (𝑛𝑡 − 1)/𝑛𝑡2.   

Third, equation (11) implies that miners have incentives to revert to the equilibrium level of computer power as 

a response to Bitcoin price changes because otherwise miners would experience losses. 

We follow Abadi and Brunnermeier (2018) and assume a free entry equilibrium where miners enter until profits 

are driven to zero. In the blockchain system, miners don’t compete in prices but in capacity, similar to Cournot-

type firms. An increase in the processing power of competing miners results in the expansion of the total 

computing capacity. In the presence of network externalities, free entry of miners serves to pin down the 

strength of the security. 

Using equations (9) and (10), it is possible to derive the equilibrium number of miners, nt, depending on mining 

returns, variable costs, fixed costs and the level (intensity) of competition, (𝑛𝑡 − 1)/𝑛𝑡2: 

(12) 𝑛𝑡 = 𝐸(𝑝𝑡)𝑅𝑡/ (𝜌𝐹 + (𝑐𝑡 + 𝛿𝑞𝑡) [𝛾(𝑛𝑡−1)𝑛𝑡2 𝐸(𝑝)𝑅𝑐𝑡+(𝜌+𝛿)𝑞𝑡] 11−𝛾) 

Fixed costs are related to credit constraint and rigidities to increase capacity related to financing the entry costs 

into the mining. 

Equations (7) to (11) define the equilibrium behavior of honest miners by pinning down how much computer 

power they would allocate for mining for a given value of reward and competition from other miners. The total 

computer power devoted to the blockchain mining, 𝑛𝑡𝑚𝑡, determines the security of blockchain. As discussed 

above, the more challenging is the computational mining puzzle to solve, the safer and more stable is the 

institutional governance technology because it becomes more costly for a potentially dishonest miner to conduct 

an attack. Such an attack may adversely affect the perception of Bitcoin by its users reducing their trust and 

hence valuation of the cryptocurrency. If the reduction of the trust is large, it may cause a collapse in the 

economic value (price) of Bitcoin. As equation (11) implies, the amount of computer power for mining and 

hence the hash rate of the network would reduce, which might eventually lead to a collapse of Bitcoin 

blockchain. Thus, the security of Bitcoin blockchain is dependent on the size of mining reward received by 

miners which also determines the total computer power determined in equation (11). 
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A.2.1 Blockchain security and attacks 

The probability of a (successful) attack on blockchain is reflected in the underlying ledger’s security, it is 

inversely related the blockchain’s security budget. This probability is driven by the balance of computing power 

between an attacker and honest miners. As noted by BitcoinWiki (2019), “Bitcoin's security model relies on no 

single coalition of miners controlling more than half the mining power”.17 A miner who controls more than 50% 

of the total mining network computer power could exercise attack on blockchain that involves the addition of 

blocks that are somehow invalid or reverse previous accepted transactions (“majority attack”). Either the blocks 

contain outright fraudulent transactions, or they are added somewhere other than the end of the longest valid 

chain. A successful majority attacker could prevent (for the time that the attacker controls mining) confirmation 

of new transactions (e.g. by producing empty blocks) and reverse own transactions which potentially allows 

double-spending thus affecting all transactions that share the history with reversed transactions (BitcoinWiki 

2019). 

In our model, to control a majority power, equation (11)  implies that an attacker must control more than 50% of 

the total mining network computer power, 𝐴𝑛𝑡𝑚𝑡, where A > 1. If we assume that the attack takes the duration 

equal to s block time, then the attacker’s costs18 are 𝑠𝐴(𝑐𝑛𝑡𝑚𝑡 + 𝑞𝑡𝑛𝑡𝐼𝑡) − (1 − 𝜃)𝑞𝑛𝑡𝑚𝑡 and the mining 

reward during the attack is sptRt, where 𝜃 (0 ≤ 𝜃 ≤ 1) represents the proportion of the mining technology, mt, 

that can be recovered (reused, resoled, repurposed) after the attack.19 The first term of the attacker’s costs, 𝑠𝐴(𝑐𝑡𝑛𝑡𝑚𝑡 + 𝑞𝑛𝑡𝐼𝑡), includes energy and investment costs, while the second term, (1 − 𝜃)𝑞𝑛𝑡𝑚𝑡, represents 

the loss related to the part of mining technology that cannot be recovered after the attack. 

To des-incentivize and deter attacks on blockchain, the cost of an attack must be greater than the potential gain 

from an attack. Using the optimal condition (9), this implies the following incentive compatibility condition for 

blockchain against attacks: 

(13) 𝑠𝐴𝑛𝑚∗[(𝑐𝑡 + 𝑞𝑡𝛿) − (1 − 𝜃)𝑞𝑡] ≥ (1 − ∆)𝑠𝐸(𝑝𝑡)𝑅𝑡 + 𝑉𝐴(∆) 

 
17 Although Bitcoin has not suffered from a majority attack, a number of Altcoins were subject to successful 
attacks in the past. For example, this was the case of the Bitcoin hard fork (Bitcoin Gold) in May 2018 (stealing 
$18 million worth of Bitcoin and other cryptos ), Ethereum Classic (ETC) in January 2019 (double spending to 
over 200,000 ETC worth around $1.1 million), and Verge (XVG) was attacked several times in 2018 (with the 
biggest attack extracting about 35 million of XVG) (ViewNodes 2019). 

18 According to Crypto51 (2020), the theoretical cost of a 51% attack on Bitcoin is $ 413,908 per one hour. 

19 Note that if Bitcoin does not collapse after the attack, the mining equipment can be reused in continuing mining 
Bitcoin.  
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where ∆ (0 ≤ ∆ ≤ 1) is the proportional decrease in the price of Bitcoin after the attack and VA is the expected 

payoff of the attack which is dependent on ∆ and is equal to the sum of gains, 𝑉𝑡(∆), obtained over the duration 

of attack s with 𝑉𝐴(∆) = ∑ 𝑉𝑡(∆)𝑠 .20 The payoff from the attack, VA, can represent the gain from a Bitcoin 

double-spending or other type of gains (e.g. gain from a short sale of Bitcoin, gain in Bitcoin future markets 

from price fluctuation caused by the attack).  

Using equation (10), the incentive compatibility condition (13) can be rewritten as: 

(14) {[𝐸(𝑝𝑡)𝑅𝑡] 𝛾1−𝛾 − (1−∆)𝛽 } 𝑠𝐸(𝑝𝑡)𝑅𝑡 ≥ 𝑉𝐴(∆)𝛽  

where 𝛽 = 𝐴𝑛𝑡[(𝑐𝑡+𝑞𝛿)−(1−𝜃)𝑞] [𝛾(𝑛𝑡−1)𝑛𝑡2 1𝑐𝑡+(𝜌+𝛿)𝑞𝑡] 11−𝛾
 

Consider an attack where the only gain, VA, is double spending. The attacker acquires 𝑋 amount of Bitcoins 

which (s)he double spends during the attack by exchanging them for the standard fiat currency. This implies that 

the gain from attack is 𝑉𝐴(∆) = 𝐸(𝑝𝑡)𝑋 − ∆𝐸(𝑝𝑡)𝑋. After the attack, the attacker keeps the value of (double 

spent) X Bitcoins in the standard fiat currency, 𝐸(𝑝𝑡)𝑋, but loses partially or fully (value of) Bitcoins acquired 

for the attack, ∆𝐸(𝑝𝑡)𝑋. If ∆ is sufficiently small (i.e. Bitcoin does not collapse after the attack), then the system 

is vulnerable to the double-spending attack. However, if ∆= 1 there is no gain from double-spending attack 

because the double spending attacker loses exactly as much value as (s)he gains from double spending. That is, 𝑉𝐴(∆) = 0 and equation (14) collapses to [(𝛾(𝑛𝑡 − 1)/𝑛𝑡2)(𝐸(𝑝𝑡)𝑅𝑡/𝑐𝑡 + (𝜌 + 𝛿)𝑞𝑡)]1/(1−𝛾) = 𝑚𝑡 ≥ 0. If ∆ is 

sufficiently large, then the attack can sabotage the blockchain and lead to its complete collapse if ∆= 1. In this 

case, the motivation of the attacker may be other than the gain (profit) from double spending (e.g. adversary 

power interested to damage the Bitcoin which could include a competing centralized intermediary, a competing 

cryptocurrency, or other entity) (Budish 2018).  

In line with Abadi and Brunnermeier (2018); Budish (2018), equation (14) implies that the equilibrium block 

reward to miners must be sufficiently large relative to the one-off gain from the attack. Given that the gain from 

the attack, 𝑉𝐴(∆), is unknown (e.g. in the case of the double spending attack, X an thus 𝑉𝐴(∆) = 𝐸(𝑝𝑡)𝑋 −∆𝐸(𝑝𝑡)𝑋 could be large for ∆< 1) and its value might be substantial, the equilibrium mining power needs to be 

larger than the one implied by equation (11) in order to deter an attack. This is induced by the fact that the 

 
20 Note that in the steady state situation assumed in the incentive compatibility condition (13), implies that the 
discount rate ρ cancels out with 𝑉𝑡(∆) = 𝑉𝑙(∆) for 𝑡 ≠ 𝑙. 
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payoff from the blockchain attack, VA, does not affect the economic behavior (incentives) of honest miners in 

allocating their computer power for mining (i.e. VA does not enter in equation (11)). 

 


